
IDTIC

MAINTENANCE METRICS

FOR JOVIAL (J73) SOFTWARE

THESIS

Douglas R. Tindell
Captain, USAF

AFIT/GE/ENG/88D-57

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

*LUb~ niie 89 1 17 062

AFIT/GE/ENG/8 8D-57

MAINTENANCE METRICS

FOR JOVIAL (J73) SOFTWARE

THESIS

Douglas R. Tindell
Captain, UJSAF

AFIT/GE/ENG/88D-57

DTJCSELECTE
JAN 18 8.

H
Approved for public release; distribution unlimited

AFIT/GE/ENG/88D-57

MAINTENANCE METRICS

FOR

JOVIAL (J73) SOFTWARE

TH S IS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Douglas R. Tindell, B.E.E., M.P.A.

Captain, USAF

DECEMBER 1988

Approved for public release; distribution unlimited

Preface

The goal of this study was to determine whether metrics

could indicate the maintainability of JOVIAL (J73) software,

and, if any were found, to implement selected ones.

An extensive literature search was performed to identify

metrics that met three criteria: indicated maintainability,

possessed empirical support, and applied to JOVIAL (J73).

Since maintainability could not be meaured directly, a

stronj indicator, complexity, was used. Based on evaluation

criteria and sponsor requirements, the information metric was

selected for implementation from several complexity metrics.

The implementation was tested with both simple code

examples and actual F-16 flight software. A plan to compare

the results of the metric with the results of the sponsor's

manual review method was described.

I am indebted to several people for their assistance and

encouragement during this effort. Many thanks go to Major

Jim Howatt, my thesis advisor, for his kind patience and

valuable guidance. A special thanks must go to Major John

Stibravy whose willingness to read yet another draft exceeded

even my imagination. Professor Dan Reynolds and Doctor Tom

Hartrum deserve thanks for their efforts to ensure my work

was understandable and correct. I am especially grateful to

my sponsor, Captain Dan Telford, for his support and genuine

interest. Most importantly, I thank my wife for her

love and encouragement throughout the AFIT graduate program.

ii
t

Table of Contents

Volume 1

Page

Preface......................

List of Figures.......................v

List of Tables......................vii

Abstract.........................viii

I. Introduction......................1

Background....................3
Problem.......................7
Scope.......................8
Limitations....................8
Approach......................8
Thesis Organization 9

Ii. Literature Review...................10

Quality......................10
Models......................12
Complexity....................24
Metrics.......................28
Summary.......................37

III. Selection of Metrics.................38

Criteria.....................39
Comparison....................42
Selection.....................51

IV. implementation of Selected Metrics..........55

Language Overview.................55
Adaptation Attempts................57
Construction Analysis...............58
Analyzer Construction...............70
Summary......................83

V. Analyzer Verification/Validation...........84

Simple Examples..................84
Flight Software..................94
Comparison Plan..................98

iii

Page

VI. Conclusions and Recommendations104

Conclusions106
Recommendations107
Summary 108

Bibliography109

Vita 116

Volume 2

JAMS Code Listing 1

Acoession For

HTIS GRA&I

DTIC TAB 0
UWanouioed 0
Justlfloatlon

By---
D-Istributlon/

AvA!] zbillty Codes

Aail and/or

DIst Special

iv '

List of Figures

Figure Page

1. Characteristics Tree 14

2. Three Views of Software Quality Factors 17

3. Software Quality Models23

4. Concept Map of Chapter 2 27

5. Concept Map of Metrics Studied28

6. Three Kinds of JOVIAL (J73) Modules56

7. Fan-in/Fan-out Reversal66

8. The Structure of a Syntax-Directed Compiler . . . 69

9. JOVIAL (J73) Module Structure73

10. JAMS Program Structure 74

11. Pseudocode for the Procedure JAMS75

12. Pseudocode for METRICPACKAGE77

13. Pseudocode for the Procedure ANALYZE 79

14. Pseudocode for SCANNER PACKAGE81

15. Pseudocode for IOPACKAGE 82

16. Pseudocode for DEFSPACKAGE83

17. Example Program #1 85

18. Analyzer OutpuL of Example Program #185

19. Example Program #2 88

20. Analyzer Output of Example Program #2 89

21. Example Program #3 91

22. Analyzer Output of Example Program #3 93

23. Analyzer Output for FCC Software - #194

24. Analyzer Output for FCC Software - #2 95

v

Figure Page

25. Analyzer Output for FCC Software - #3(.......96

26. Analyzer Output for FCC Software - #4 96

27. Vee Heuristic for Method Comparison101

28. Applying the Spearman Test Statistic 102

vi

= --.-. .. ,.. ,. M M ,=-i i m =m,,,. lmm ii i i

List of Tables

Table Page

1. Characteristic Descriptions15

2. Software Quality Factor Definitions19

3. Rules for JAMS Constructions 71

4. JAMS Objects 76

5. JAMS Limitations 97

vii

AFIT/GE/ENG/88D-57

Abstract

The expense of maintaining software is greater than any

other phase in the life cycle. To help reduce the costs,

software which may not be maintainable should be identified

before being released for use. Measures of software quality,

or metrics, may be able to help do this. The goal of this

-&t-udy'was to identify measures which could indicate the

maintainability of JOVIAL (J73) software, and to implement

selected ones.

Maintainability cannot be measured directly, so a strong

indicator, complexity, was measured instead. Five categories

of complexity metrics were reviewed: size, control, data,

information, and hybrid. Through an analysis of metrics from

each category, the information metric was selected for

implementation.

Using Ada as the implementation language, an analyzer to

compute the information metric was constructed. The design

was primarily object-oriented but was influenced by compiler

theory. The resulting analyzer can easily incorporate new

metrics or new input/output requirements.

Testing was performed using both simple code examples

and actual F-16 flight software. The analyzer properly

computes the information metric with few exceptions. A plan

to compare the results of the analyzer with the results of

the sponsor's present manual review was described. --

viii

MAINTENANCE METRICS FOR JOVIAL (J73) SOFTWARE

I. Introduction

Software is a critical area of concern in today's U. S.

Air Force. The primary reason is a large and growing list of

weapon systems that depend directly on embedded computers.

Some of the systems included in this list are: Bl-B, AMRAAM,

LANTIRN, F-Ill, F-15E, F-16, Peacekeeper, and Minuteman III.

In each weapon system, one or more computers are used, and

each computer must have software to work. The performance of

these systems depends, in a very real sense, on the software

operating within the embedded computers. "Software has

become the pacing technology in advanced fighters, just as it

has in most other weapon systems and information systems"

(Canan, 1986:49). Another reason for concern is the amount

of software used by each system. Just as the number of

computers used in a weapon system is increasing, the amount

of software used by a single computer is increasing. The

reason for this is twofold. First, the capabilities of

weapon systems are being expanded. As the operational

requirements become more complex, so must the software.

Second, more functions are being done in software rather than

in hardware. Consideration of these facts will lead to a

better understanding of the significance of software in

today's weapon systems:

1q

"- Through most of the Vietnam War, Air Force F-4's
contained no digital computers and no software.

- Each F-16A that went operational in 1981 had seven
computer systems with fifty digital processors and
135,000 lines of code.

- This year's F-16D has fifteen computer systems with
300 digital processors and 236,000 lines of code.

- Moreover, the magnitude of the software inside an
aircraft may represent only a fraction of that
aircraft's total software requirement." (Canan,
1986:49)

One more reason for concern is a definite lack of software

professionals (programmers and managers). The claim that

"creating software is still much more an art than a science"

marks program development as a largely labor-intensive, human

endeavor (Canan, 1986:50). Individual effort and creativity

therefore play a crucial role in developing software. It

also means that automated tools and development environments,

while helpful, can't boost software productivity alone. Art

or science, not enough trained people exist to fill the need.

A final reason for concern is the effort required to keep a

fielded weapon system up-to-date. As targets, equipment, and

user's needs change, so must the software. This can be very

expensive. By 1990, ten percent of the total defense budget

is predicted to be spent on software alone. For example,

it cos- 3 $85 million to develop the software for an
F-16D. It costs another $250 million to maintain that
software--rectifying its errors, keeping it in shape,
updating it--over its anticipated operational lifetime
[Canan, 1986:491.

The bottom line: availability of software for current and

future weapon systems is restricted by a large and increasing

2

demand, greater complexity, low productivity, and huge

maintenance costs. (Canan, 1986:46-52)

Background

An ever-increasing level of computational hardware

sophistication coupled with the need to produce and operate

the associated software has prompted several authors to

declare that a "software crisis" exists (Pressman, 1987:13;

Conte and others, 1986:1; Canan, 1986:46; Lehman, 1985:491).

This "crisis" is not a simple situation where demand for

software greatly exceeds the ability to produce. It is much

more involved.

Rather, the software crisis encompasses problems
associated with how we develop software, how we maintain
a growing volume of existing software, and how we can
expect to keep pace with a growing demand for more
software [Pressman, 1987:13].

Thus, the software crisis actually extends over the

entire software development life cycle. Although different

development models have been proposed, most establish several

independent phases with defined start and stop points. For

this study, these phases may be grouped into four categories

which encompass these basic concepts:

- Design

- Coding

- Testing

- Maintenance
(Conte and others, 1986:6)

Although software design, coding, and testing have been

discussed at length in the literature, relatively little

3

emphasis has been placed on maintenance (Swanson, 1976:492;

Parikh, 1982:10). As an illustration, one author proclaimed

that "to work in maintenance has been akin to having bad

breath" (Scnneidewind, 1986:303). Despite this opinion of

software maintenance, the truth is that maintenance costs may

range from 40 to 90 percent of the total cost of a large-

scale software system (Boehm, 1973:48; Zelkowitz, 1978:202;

Harrison and others, 1982:65; Pressman, 1987:50, 525). Boehm

was one of the first researchers to recognize this. In an

article entitled "Software Engineering" he said,

despite its size, software maintenance is a highly
neglected activity. There are a few good general
principles and few studies of the process, most of them
inconclusive [Boehm, 1976:1236].

Even though the majority of life cycle resources are expended

in the maintenance phase, it is the most ignored phase!

Several possible reasons for this paradox are:

75-80 percent of existing software was produced
prior to significant use of structured programming

- It is difficult to determine whether a change in
code will affect something [i.e., some other portion
of the code]

- It is difficult to relate specific pcogramming
actions to specific code" (Schneidewind, 1987:303)

Essentially, software cannot be maintained unless it was

designed to be maintained (Schneidewind, 1987:303). Also,

the misconception that software maintenance holds no creative

challenge is a severe detriment to attracting talented

professionals to the field (Liu, 1982:25). Perhaps that is

4

why "in general, less-qualified personnel are assigned to

maintenance tasks" (Boehm, 1976:1236).

Boehm postulated that common software development

practices may be at the root of the problem. Cost and

schedule often drive the software effort. Another prime

consideration is hardware optimization. Special emphasis of

any of these areas will lead to increased maintenance costs

for the software produced. (Boehm, 1976:1236)

Modern software systems must emphasize maintainability

to keep the overall system life cycle costs down to

manageable levels.

The major expenses in computer systems at present are in
software. While the cost of hardware is decreasing
rapidly, software productivity improves only slowly.
Thus, the cost of software relative to hardware is
rapidly increasing. The majority of this software cost
can be attributed to software maintenance [Yau and
Collofello, 1985:849).

Long-term system software costs skyrocket when performance of

maintenance tasks is difficult. A software system that is

hard to maintain is an expensive one. The key to holding

down the cost of a large-scale software system, then, is to

write the software so that maintenance is easy (Gustafson and

others, 1985:2).

The phrase "software maintenance" is misleading. (The

Air Force has even dropped the term "maintenance" and refers

instead to "post-deployment software support".) Intuitively,

maintenance means the replacement of damaged or worn

components to return the affected system to a former state.

Since software does not wear out or break in the traditional

5

sense, "software maintenance" means that current program

execution is considered unacceptable and will be chanqed.

According to Lehman and Belady, reasons for unacceptability

include: correction of errors, incorporation of

improvements, or adaptation to new environments. Yau and

Collofello agree. They state that "software maintenance is a

very broad activity that includes error corrections,

enhancements of capabilities, deletion of obsolete

capabilities, and optimization" (Yau and Collofello,

1985:850). Perhaps the best statement of the activities

involved in software maintenance was given by Swanson. He

(Swanson, 1976:492-494) divided maintenance activities into

three cateqories:

Corrective Maintenance - Activities performed in
response to either a processing failure (software
doesn't work), performance failure (software
doesn't work right), or implementation failure
(software doesn't meet implementation standards).

Adaptive Maintenance - Activities performed in response
to changes in data or processinq environments.

Perfective Maintenance - Activities performed "to
eliminate processing inefficiencies, enhance
performance, or improve maintenance" (Swanson,
1976:493).

Note the implication is that software maintenance somehow

changes the software away from its original state to a new

state. This is entirely different than the intuitive meaning

of "maintenance." (Belady and Lehman, 1985:304)

Once the basic concepts behind the maintenance activity

have been stated, a formal definition can be made. Most

software maintenance researchers have given their own

6

definition that emphasizes particular points they consider

important to the activity, and brief a look at some of the

definitions used is helpful. Software maintenance is:

The job of correcting errors and changing program
operation as requirements change [Berns, 1984:14].

The process of "fixing" the system so that its operation
more closely corresponds to the desired characteristics
[Conn, 1980:401].

A continuing phase in which additional discovered errors
are corrected, changes in code and manuals are made, new
functions are added, and old functions deleted [Conte
and others, 1986:4].

The action taken under stated conditions to restore a
failed system to operable condition within a specified
time. (Gilb, 1977:26)

The ease with which software can be understood,
corrected, adapted, and/or enhanced [Pressman,
1987:531).

Modification of a software product after delivery to
correct faults, to improve performance or other
attributes, or to adapt the product to a changed
environment [Schneidewind, 1987:309 who referenced the
ANSI/IEEE Standard 729, 1983].

All of these definitions are very similar, and do encompass

the three categories of activity given by Swanson. Thus, any

one may be used for this research effort.

Problem

This study's sponsor, an Air Force Operational Test and

Evaluation Center (AFOTEC) unit responsible for reviewing

F-16 flight software releases, wants to improve its ability

to identify software that may be difficult to maintain. A

manual review process is currently used, but the procedures

and tools available do not provide the ability to thoroughly

7

review even 10 percent of the total code to be analyzed

(Telford, 1988). Therefore, the use of automated software

metrics has been proposed to augment it.

Scope

This research studied the difficulty of evaluating

effectively the maintainability of software written in the

JOVIAL (J73) programming language, and was concerned only

with the following:

- Quality factors which apply to software maintenance

- Metrics which measure these factors and have empirical
data available to back up their applicability to
maintenance

- Implementation of these metrics for JOVIAL (J73)
software

Limitations

No new metrics were proposed. The goal of this study

was not to propose new maintenance metrics but rather to

research whether existing metrics could be used to predict

the maintainability of JOVIAL (J73) software.

Any JOVIAL (J73) software used for analysis was assumed

to be syntactically valid.

Approach

Based on the scope of this study, a thorough review of

software metrics literature was absolutely necessary. This

provided the theoretical background required to identify

maintenance quality factors and to select appropriate metrics

- -- "-"~ w' m a mnm m al nll I i HU '8

to measure them. As many of the selected metrics as possible

were implemented.

To implement the selected metrics as simply as possible,

an effort to adapt existing code from the JOVIAL Automated

Verification System (JAVS) and the Integrated Tool Set (ITS)

JOVIAL (J73) compiler was made. Since neither approach was

feasible, new code using the JANUS/Ada (trademark of R. R.

Software) programming language was written.

Comparison of the expected results of the metrics with

the results of the present manual process would normally

complete this kind of research. However, the results of the

sponsor s manual review process were available too late to be

included in this thesis. Accordingly, a plan describing how

the results could be compared was included for future study.

Thesis Organization

Chapter 2 reviews the current literature with emphasis

on maintenance quality factors and associated metrics that

have empirical evidence to support them. The metrics that

were implemented in this study are selected, justified, and

refined in Chapter 3. The design of the analyzer which

implements the selected metrics is documented in Chapter 4.

Chapter 5 contains the analysis of some JOVIAL (J73) software

using the analyzer. Conclusions about this research effort

and recommendations for future study are presented in Chapter

6.

9

II. Literature Review

Chapter 1 revealed that even though software maintenance

demands more resources than any other development phase

little effort to find ways to minimize the required resources

has been made. However, the spiraling expense of maintaining

software systems which may remain in service for 10 to 20

years has begun to attract the attention of researchers

(Harrison and others, 1982:65; Kearney and others, 1986:1044;

Kafura and Reddy, 1987:335).

As research has progressed, improving the "quality" of

software has often been touted as the overall goal. But

just what is "software quality"? It could be described as

"a distinquishing attribute which indicates a degree of

excellence" (McCall and others, 1977:2-1). Clearly, such a

hazy description is not much help in developing techniques to

produce quality software, but it may be the best definition

possible (Mohanty, 1979:251).

Quality

The idea of measuring the quality of software has been

around since at least 1968. In a short paper published that

year, the authors stated why they felt measures of software

quality were needed.

In the absence of specific, applicable quantitative
measurement tools there exists no means of defining the
desired level of quality in a computer program, where
quality is considered as something beyond coriect
program functioning, nor of ascertaining whether the
desired level has been achieved [Rubey and Hartwick,
1968:6711.

10

Quality was considered to be composed of a number of "quality

attributes" where an attribute was defined to be "a precise

statement of a specific software characteristic" (Rubey and

Hartwick, 1968:671). These attributes linked together to

form a hierarchy resembling a pyramid. At the top was high-

quality software and at the bottom was a large number of

minor attributes. A few major attributes lay in the middle.

These were broad enough to specify the qualities desired, yet

focused enough to support quantitative measurements. In all,

seven groups of major attributes were given.

"A - Mathematical calculations are correct[lyJ
1 performed.

A2 - The program is logically correct.

A3 - There is no interference between program entities.

A4 - Computation time and memory usage are optimized.

A5 - The program is intelligible.

A6 - The program is easy to modify.

A - The program is easy to learn and use." (Rubey and
Hxrtwick, 1968:672)

Each group contained a number of sub-attributes which did not

have to be applied equally to a program. Depending on the

specific software, some sub-attributes would have greater

importance than others. (Rubey and Hartwick, 1968:671-672)

The next major effort to define software quality was

made by Tom Gilb in his book, Software Metrics. He focused

attention on developing practical techniques for measuring

software quality, even though most of the metrics he proposed

are impractical to implement. In Gilb's words,

111

All critical software concepts have at least one
practical way of being measured. It may not be elegant,
but if it improves results, it should be used until
perfectionists can indicate a better tool [Gilb,
1977:161.

At about the same time Gilb's book was published, two

other works dealing with software quality emerged. Both

proposed a series of software measures, but unlike Gilb the

authors developed models of software quality to support their

proposed quantitative measures.

Models

When details are suppressed to permit underlying

properties to become visible, a model is being used. Thus, -

a model

is simply an abstraction of a real world process or
product. It attempts to explain what is going on by
making assumptions and simplifying the environment
[Basili, 1985:31.

The activity of conceiving, shaping, and refining the

software is the process, and the completed software produced

by the process is the product (Conte and others, 1986:20-21).

Two kinds of models may be constructed. An empirical model

is one that is made by fitting equations that express the

desired information to observed data. Validation of the

model may be performed through correlation of the equations

and the data. An analytic model is one that is made under

the assumption that the process or product being modeled is

well-enough understood that equations to express the desired

information can be written beforehand. Validation of this

124

model is accomplished by "fine tuning" the equations as

observed data is reviewed. (Shaw, 1981:255-256)

One of the earliest efforts to define a software model

was made by Boenm and others. Using intuition and logic,

they listed and organized a number of characteristics that

described software quality. Initially, a working set of

eleven characteristics was defined. Later, the set was

revised to eliminate overlap, and a hierarchy of order

applied. A set of twelve "primitive characteristics" that

related to seven higher characteristics were formed (Boehm

and others, 1978:3-18). These seven were grouped under two

higher characteristics which in turn were grouped under a

single overall characteristic. Figure 1 illustrates the

resulting structure. The higher characteristics were thought

to relate more closely to the user while the lower ones were

intended to make it easier to define quantifiable measures.

Table 1 shows the characteristic descriptions. (Boehm and

others, 1978:x-xiv, 1-1 thru 1-5, 3-1 thru 3-26)

Another early effort to define a software quality model

was made by McCall and others. Working under an Air Force

contract managed by the Rome Air Development Center (RADC),

this group took much the same approach as Boehm and others

but defined a larger number of characteristics. Their first

task was a literature search to identify characteristics or

software quality factors as they called them. This formed

the initial list of factors. Next, this list was reviewed to

eliminate redundancy and emphasize a user orientation. It

13

D EVI CE- ,O..(C

/ COMPLETENESS

PORTABILITY

t
CON S I S T E N C Y

EFFICIENCY

H ACCESSIBILITY

UTILITY
E~~~~ NIN ERING

CMUIAIEES-

TEST ABLITY
S RCUENS

SELF-DESCRIPTIVE-

MODIFIABILITY

Figure 1. Characteristics Tree (Boehm and others, 1978:xiii)

was during this review process that three different views of

the factors became visible: Product Operation, Product

Revision, and Product Transition (see Figure 2). These views

reflected a strong user viewpoint so they were identified as

the top of the software characteristics hierarchy. Each was

formed by the contribution of a number of factors and each

factor was composed of a number of sub-factors or criteria.

McCall, just like Boehm, intended the hierarchy to form a

14

Table I

Characteristic Descriptions

Characteristic Description

General Utility The extent to which the software can
be used on both its current computer
system and other computer systems.

As-Is Utility The extent to which the software can
be used in its current form and on
its current computer system.

Maintainability The extent to which the software can
be easily changed to meet new
requirements.

Portaoility The extent to which the software can
be run on more than one computer
system.

Reliability The extent to which the software can
be expected to satisfactorily
perform its intended function.

Efficiency The extent to which the software can
be expected to perform its function
without using excessive resources.

Human Engineering The extent to which the software
performs its function without
wasting user resources or causing
frustration.

Testability The extent to which the software
lends itself to evaluation of
acceptance criteria.

Understandability The extent to which the purpose
of the software is clear to the
evaluator.

Modifiability The extent to which the software can
be easily changed.

Device Independence The extent to which the software
can be run on computer systems other
than its current one.

- continued -

15

Table 1 - continued

Characteristic Descriptions

Characteristic Description

Completeness The extent to which all of the
software components exist and are
fully developed.

Accuracy The extent to which the output of
the software satisfies the intended
purpose.

Consistency The extent to which the software
contains uniform nomenclature.

Device Efficiency The extent to which the software
uses machine resources without
excessive waste.

Accessibility The extent to which selected software
components can be easily used.

Communicativeness The extent to which easily-
understood, useful inputs and
outputs are provided.

Structuredness The extent to which a logical
organization exists between software
components.

Self-Descriptiveness The extent to which the software
contains information to allow a
reader to understand its purpose,
scope, limitations, organization,
inputs, and outputs.

Conciseness The extent to which the software
contains only necessary information.

Legibility The extent to which the purpose of
the software components as well as
the overall purpose is easily
understood by reading the code.

Augmentability The extent to which the software can
be easily changed to encompass
additional data structures or
computational functions.

(Boehm and others, 1978:3-1 thru 3-26)

16

0 IA~

z 31

32 16W
. 4

0(

-J-

3b.
U)

-1-

w 0

W4J

I-.

4
03

44

170

dichotomy with user-oriented characteristics at one end and

measurement-oriented characteristics at the other. The final

hierarchy is made up of the three views at the top, eleven

factors in the middle, and twenty-five criteria at the

bottom. Table 2 lists the description of each view, factor,

and criteria. (McCall and others, 1977:2-1 thru 4-11)

Curtis recognized the similarity of these approaches

for quantitatively measuring software quality. To emphasize

the parallel ideas embodied in the Boehm and others model and

the McCall and others model, he integrated the structure of

both into a single diagram. See Figure 3. User-oriented

characteristics lie at either end of the diagram. Progress

inward from either end of the diagram reveals a middle layer

of in-between characteristics and finally a bottom layer of

measurement-oriented characteristics. The actual software

measures, located in the center, are labeled "metrics."

Both software quality models provide a theoretical basis

for measuring the degree to which certain characteristics are

exhibited by the software being analyzed. However, it must

be realized that "the desireable qualities of a software

product vary with the needs and priorities of the prospective

user" (Boehm and others, 1980:220).

The interaction of software with people is critical to

software maintainability. This software-human relationship

is frequently approached from the viewpoint of software

quality (Baker and Zweben, 1980:506). In this effort, the

maintainability of software is the quality being studied.

18

Table 2

Software Quality Factor Definitions

View Definition

Product Operation The user's need for software that
can be operated easily and that
performs its function well.

Product Revision The user's need for software that
can be easily changed to fix
problems and meet new requirements.

Product Transition The user's need for software that is
easy to use with and on other
computer systems.

Factor Definition

"Usability The effort required to learn,
operate, prepare input, and
interpret output of a program.

Integrity The extent to which access to
software or data by unauthorized
persons can be controlled.

Efficiency The amount of computing resources
and code required by a program to
perform a function.

Correctness The extent to which a program
satisfies its specifications and
fulfills the user's mission
objectives.

Reliability The extent to which a program can
be expected to perform its intended
function with required precision.

Maintainability The effort required to locate and
fix an error in an operational
program.

Testability The effort required to test a
program to insure it performs its
intended function.

- continued -

19

Table 2 - continued

Software Quality Factor Definitions

Factor Definition

Flexibility The effort required to modify an
operational program.

Reusability The extent to which a program can be
used in other applications - related
to the packaging and scope of the
functions that programs perform.

Portability The effort required to transfer a
program from one hardware
configuration and/or software system
environment to another.

Interoperability The effort required to couple one
system with another."

(McCall and others, 1977:3-5)
Criteria Definition

Operability Those attributes of the software
that provide for minimum processing
time.

Training Those attributes of the software
that provide for control of the
access of software and data.

Communicativeness Those attributes of the software
that provide useful inputs and
outputs which can be assimilated.

I/O Volume The amount of information that can
be input and output through the
software.

I/O Rate The speed at which the information
can be passed by the software.

Access Control Those attributes of the software
that provide for control of the
access of software and data.

Access Audit Those attributes of the software
that provide for an audit of the
access of software and data.

- continued -

20

Table 2 - continued

Software Quality Factor Definitions

Criteria Definition

Storage Efficiency Those attributes of the software
that provide for minimum storage
requirements during operation.

Execution Efficiency Those attributes of the software that
provide for minimum processing time.

Traceability Those attributes of the software
that provide a thread from the
requirements to the implementation
with respect to the specific
development and operational
environment.

Completeness Those attributes of the software
that provide full implementation of
the functions required.

Accuracy Those attributes of the software
that provide the required precision
in calculations and outputs.

Errcr Tolerance Those attributes of the software
that provide ccntinuity of operation
under nonnominal conditions.

Consistency Those attributes of the software
that provide uniform design and
implementation techniques and
notaticn.

Simplicity Those attributes of the software
that provide implementation of
functions in the most understandable
manner. (Usually avoidance of
practices which increase
complexity.)

Conciseness Those attributes of the software
that provide for implementation of a
function with a minimum amount of code.

- continued -

21

Table 2 - continued

Software Quality Factor Definitions

Criteria Definition

Instrumentation Those attributes of the software
that provide for the measurement of
usage or identification of errors.

Expandability Those attributes of the software
that provide for expansion of data
storage requirements or
computational functions.

Generality Those attributes of the software
that provide breadth to the
functions performed.

Self-Descriptiveness Those attributes of the software
that provide explanation of the
implementation of a function.

Modularity Those attributes of the software
that provide a structure of highly
independent modules.

Machine Independence Those attributes of the software
that determine its dependency on the
hardware systew.

Software System Those attributes of the software
Independence that determine its dependency on the

software environment (operating
systems, utilities, input/output
routines, etc.)

Communications Those attributes of the software
Commonality that provide the use of standard

protocols and interface routines.

Data Commonality Those attributes of the software
that pic.-ide the use of standard
data representations.

(McCall and others, 1977:3-1 thru 3-2, 3-5, 4-4 thru 4-5)

22

• °.-- --.-.-- ,rw -... .i m mmi ~ mm II

00

a i x

-44

0

-4

I -23

Although many characteristics of software maintainability may

be identified, complexity is generally felt to be the most

important (Bowen, 1978:149).

Complexity

Complexity is considered to be a strong indicator of

the maintainability of software (Ivan and others, 1987:94).

One expects a more complex piece of software to be more

likely to contain errors (Woodward and others, 1979:101;

Curtis and others, 1979b:359). Studies indicate that the

inability to control changes made to the software after it

has been delivered to the user is partially to blame for the

high cost of maintenance (Freedman and Weinberg, 1982:53-54;

Harrison and others, 1986:65; Kafura and Reddy, 1987:335).

This lack of control can be attributed to two reasons:

- Maintenance is performed by a diverse and changing
group of people.

- The maintenance phase occurs over a longer period of
time so different methodologies may in fact be used.

(Kafura and Reddy, 1987:335)

Changes during tiie design, coding, and testing phases are

usually tightly controlled by a single group of people. This

is possible since these phases are fixed and relatively

short. The time span of the maintenance phase, however, is

not limited. The long service lives of some software systems

means the likelihood of the same group of people performing

maintenance is very small. As maintainers change, so will

the way maintenance is performed. Not only do the actual

changes to the software differ, the methodology guiding the

24

maintenance will differ. This is due to either new personal

preferences or new ideas about how to perform software

maintenance.

As time passes and more changes are made, the software

becomes increasingly complex (Harrison and others, 1982:65;

Kafura and Reddy, 1987:335). In turn, future maintenance

becomes increasingly difficult.

This complexity/maintenance cycle is self-perpetuating.

As maintenance is performed, complexity increases (Belady

and Lehman, 1985:304). As the complexity increases, the

likelihood of needing maintenance as well as the cost of that

maintenance increases (Lehman, 1985:494).

If complexity could be quantitatively measured, it would

be possible to cnange maintenance activities to break this

vicious cycle. Many researchers feel that this approach

holds promise in slowing the increasing cost of software

maintenance (Weissman, 1974:25; Harrison and others, 1982:65;

Kearney and others, 1986:1044; Kafura and Reddy, 1987:335).

Many studies discuss the relationship between software

complexity and maintainability but never bother to define

what complexity really is (Curtis, 1981:207-208). Often, it

is treated as a "fuzzy feeling" and the reader is expected to

understand without explanation (Curtis, 1979:96). However,

at least two definitions are available.

Complexity is a characteristic of the software interface
which influences the resources another system will
expend while interacting with the software [Curtis,
1979:102].

25

Complexity is the measure of the resources expended by
another system in interacting with a piece of software
[Basili, 1980:2321.

These definitions are similar. They concentrate on the

interaction of the software with another system which may be

either machine or human (Curtis, 1979:102; Basili, 1980:232).

Two broad categories of complexity may be identified:

computational and psychological. Computational complexity

refers to "...the quantitative aspects of the solutions to

computational problems" (Rabin, 1977:625). The hardware-

software interface is emphasized. Verification of the

efficiency of an algorithm is an example of computational

complexity. Psychological complexity refers to the

"characteristics of software which make it difficult to

understand and work with" (Curtis and others, 1979a:96). The

programmer-software interface is emphasized. Determining the

difficulty of comprehending and changing a software module is

an example of psychological complexity. (Curtis, 1979:95)

At this point, a brief review using the technique of

concept mapping (originated by Novak and Gowin, Learning How

to Learn, 1984:15-54) is helpful. Figure 4 displays a

concept map of this chapter. Boldface words in bubbles

represent the concepts which are linked by the lines and

words between the bubbles. Generally, software exhibits a

number of qualities. Maintainability is primarily driven by

complexity so that path is continued. Complexity may be

classified as being either computational or psychological.

Since software is maintained by people, the path continues

26

software

exhibits

can be can be canbe ...

complexity performance reliability

is or

computational psychological

is affected by

are quantified by

metrics

Figure 4. Concept Map of Chapter 2

27

through psychological complexity. The characteristics of

the software directly affect this complexity, and may be

quantified by metrics. Figure 5 shows these characteristics

and the related metrics which were studied in this research

effort. The remainder of this chapter focuses on these

complexity metrics.

psychological

complexity

is affected by---------

Csize

LOC data - suite
- statement - combined

count - count
- token - span

count - global
- software usage

science

control informatio

- cyclomatic - Henry and Kafura's
complexity information flow
number metric

Figure 5. Concept Map of Metrics Studied

Metrics

Techniques for measuring software quality are commcnly

referred to as metrics. As Gilb points out, "metrics

provides us with a powerful language for describing the

28

relationships which we desire, expect or experience in any

grcup of subsystems" (Gilb, 1977:132). The term "complexity

metrics" further refines the nature of these measures since

they are usually "developed to assess the complexity of

programming tasks" (Curtis and others, 1979a:96). Howatt

recognized that the term is inaccurate since most measures

reference the interaction between program modules rather than

between the programmer and program. He also noted that the

word "metric" typically refers to a mathematical function

between several objects, but is most often used to refer to

only one object, the program being measured (Howatt, 1985:1-

2). Despite these inconsistencies, this study will use the

phrase "complexity metric" to refer to any technique that

measures a desired quality of software since this is

generally understood.

A metric must be well-defined and consistent if it is to

be a useful measure (Levitin, 1986:314; Basili, 1980:232).

It should be fairly easy to understand and produce reasonable

results. Minor changes in the software should not cause

drastic changes in the metric computed.

Of course, "the most desirable metric is a direct

measurement" of the quality being measured but that may not

be possible for a variety of reasons (Shaw, 1981:252):

- not available when desired

- too expensivw o collect

- not possible to make a direct measurement
(Shaw, 1981:252)

29

In the case of maintenance, a direct measurement cannot

be made so indirect measurements based on a complexity model

aust be used. A good complexity metric is one which will:

- relate intuitively to the psychological complexity of
the software.

- serve as a tool to compare different software versions.

- show preference to programs written with good
programming style.

- be orthogonal to (independent of) other metrics.
(Hansen, 1978:29)

Size metrics are measures based on the premise that

software becomes more complex as its size increases (Elshoff,

1976:115-116). Included in this category are: lines of code

(LOC), statement count, token count, and Halstead's Software

Science length and volume. This category is the oldest and

has been studied most. Experimental evidence indicates that

a larger software system will require more maintenance than a

smaller one (Harrison and others, 1982:66; Li and Cheung,

1987:707).

Counting the lines of code is the most common method of

measuring software size (Harrison and others, 1982:66). At

first brush, it seems relatively simple to count the number

of lines in a program. However, not everyone agrees on what

constitutes a line of code or even which lines should be

counted (some people prefer to exclude comments and data

declarations, for example). Despite these shortcomings, LOC

remains a popular metric due to its simplicity and ease of

computation. (Levitin, 1986:314-315)

30

Statement count is a measure that originated with the

advent of free form programming languages. Languages such as

FORTRAN and BASIC can have only one statement per line of

code, so statement count is identical to LOC. As free format

languages were developed, this was no longer true because

statements could be continued past a single physical line or

multiple statements could be placed together on one line.

Since different languages define a statement differently

(some, like Prolog, don't support the idea of a statement),

this metric is often not simple to compute. Other problems

such as nested statements and statement separators make this

measure a tough one to use. (Levitin, 1986:315)

Token count is a metric that is applicable to both fixed

and free form languages. Indeed, any programming language

source code will be broken into tokens in the compilation

process. As the basic syntactic unit of software, tokens

represent the smallest logical entity which can be measured

The single disadvantage token count seems to have is that a

large software system will have an enormous number of tokens.

(Levitin, 1986:315-316)

In 1972, Maurice Halstead developed a theory of software

measurement he called "Software Science" (so called because

these measures were supposedly analogous to the laws of the

physical sciences). Software Science is based on counts of

operands and operators. Although the definition of operands

and operators is loose, operands are generally variables,

constants, and labels while operators are the arithmetic and

31

logical symbols which "operate on" the operands. Four counts

used in each measure are:

#"n = number of unique operators

n2 = number of unique operands

N1 = total number of operator occurrences

N2 = total number of operand occurrences"
(Levitin, 1986:316)

Two size measures, length and volume, have been proven in

empirical tests to be useful. They are defined as:

Length N = N + N2

which is all the symbols in a program

Volume V = N * log 2 (n, + n2)

which is the fewest bits needed to encode a program
(Lecciso and others, 1986:606)

Although studies have shown some of the Software Science

measures like length and volume to actually measure what

Halstead intended (Henry and others, 1981:144), many of his

underlying concepts have been criticized as being based on

unfounded theory. Apparently, Halstead applied concepts from

both computer science and psychology but made assumptions

which cannot be totally justified. (Levitin, 1986:316-317;

Lecciso and others, 1986:605-608; Curtis and others,

1979a:96; Curtis, 1979:98-99)

Control metrics are measures based on the premise that

software becomes more complex as the number of decision

points increases (Henry and others, 1981:144). Another way

of looking at this is to consider the metric a count of the

number of basic control paths through a program. This

32

explains why control metrics are also known as control flow

metrics since program logic may be visualized as "flowing"

along the branches in the program. Although many control

metrics have been proposed, the one presented by Thomas

McCabe in 1976 has certainly received the most attention.

(Curtis, 1979:99)

McCabe called his metric the "Cyclomatic Complexity

Number," V(G). This number is derived by first constructing

the flow graph of the software being measured. A flow graph

is simply a directed graph containing a set of nodes and

edges. An edge represents a branch in the program control

logic while a node represents a section of program statements

which are sequentially executed (i.e., not branched from or

to). Once the edges and nodes have been identified and

ccunted, the Cyclomatic Complexity Number may be computed

using this formula:

V(G) = # of edges - # of nodes + 2p

where p represents the number of connected
components in the flow graph

(Curtis, 1979:99)

Several researchers (Henry and others, 1981:148; Curtis,

1981:210-211; Curtis and others, 1979a:102-103; Curtis and

others, 1979b:358-359) have studied this metric and reported

useful results. (Bugh, 1984:10-12; Cviedo, 1980:147-148;

Henry and others, 1981:144; Curtis, 1979:99-100)

Data metrics are measures based on the premise that

software becomes more complex as the number of data item

declarations and references increases (Hutchins, 1985:17).

33

Since the fundamental purpose of software is to process data

(Conte and others, 1986:47), a complexity metric based on

data items is intuitively appealing. Studies indicate that

the amount and place of data use in a program has a definite

effect on the effort required to develop the software

(Oviedo, 1980:149). Since data flow analysis techniques are

often used to measure the complexity generated by the data

structures and their use, these metrics are often referred to

as data flow metrics. Some of the better known of these are:

a count of data item declarations, the span between data item

references, and global data usage.

One of the simplest data metrics is a count of the

amount of data used in a program. An easy way to obtain this

count is from a cross-reference listing which shows all the

variables declared and the lines where these variables are

referenced. A compiler or assembler often has an option to

generate this listing, and some software analyzers do, too.

Computation of the metric is done by counting the times a

declared data item is referenced. Care must be taken not to

count unreferenced variables as well those that don't

directly contribute to the solution of the problem. To be

such a conceptually simple metric, data count can be quite

involved to actually compute. (Conte and others, 1986:48-50)

Perhaps more important than the amount of data is the

use of that data. Two aspects of this may be used to measure

complexity: the span between data item references, and

global data usage. Span is the "number of statements between

34

two textual references to the same identifier" (Elshoff,

1976:116). This is simply the number of statements that come

between one occurrence of a variable and the next occurrence

of the same variable. As the span of a data item increases,

the complexity of the program is thought to increase since it

is more difficult to follow the flow of the data item (Conte

and others, 1986:56). Global data usage is common in today's

modularized languages. A data item is often declared in one

module and "shared" with other modules (this relates to the

idea known as visibility in languages like Ada). A larger

amount of sharing between modules is felt to indicate

increased complexity because it is more difficult to find

where a given data item is declared, used, or changed

(Harrision and others, 1982:67). Many data metrics have been

created but none are specifically discussed in this thesis

since the actual metric is very language-dependent.

Information metrics are measures based on the premise

that software becomes more complex as the flow of information

(data items passed as parameters) between software system

components increases (Henry and Kafura, 1981:511). This

explains why they are also known as information flow metrics.

Component complexity depends on two factors: the complexity

of the individual component's code, and the complexity of the

component's interface to other components (Henry and others,

1981:147). The best-known of these metrics was devised by

Sallie Henry and Dennis Kafura.

35

Henry and Kafura's metric extends the data metric

concepts. While data metrics concentrate on declarations

and item usage, information metrics focus on the software

component interface (i.e, the flow of information between

components). This capability makes it possible to measure

"complexity, module coupling, level interactions, and stress

points" which is not possible with other metric categories

such as size (Henry and Kafura, 1981:511). Several studies

have indicated useful results with the information metric.

(Rodriguez and Tsai; 1986:369-374; Henry and Kafura,

1981:511-517; Henry and others, 1981:145-149)

The final category of metrics represents a combination

of the other categories. This approach is supported by

researchers who feel that no single metric is capable of

measuring software quality (Bowen, 1978:148; Boehm and

others, 1980:220). Some of the reasons for this conclusion

are:

1"good" quality is subjective--it varies with the user

- quality in one area is often gained at the expense of
another area

- no metric yet devised fully measures what it is
intended to measure

(Boehm and others, 1980:220)

A hybrid metric is often presented as a suite of orthogonal,

non-overlapping measures, but it may also be a single metric

which integrates the strengths of various metrics into one

measure.

36

The Oviedo/VanVerth metric combines control and data

measures into one. Originally conceived by Oviedo, the

metric was extended by VanVerth to include procedure and

function calls as well as between-module data flow. Some

evidence of this measure's usefulness has been presented in

the literature. (VanVerth, 1986:164,168)

Summary

This chapter began with a discussion of several attempts

to define "software quality." A satisfactory definition was

not found, but two dichotomous models which exhibited user-

oriented characteristics at one end and measurement-oriented

characteristics at the other were described. Different views

of quality were provided by grouping the measurement-oriented

characteristics in various ways. Although maintainability is

the quality being studied, it was determined to be a quality

that cannot be directly measured. However, complexity was

identified as the biggest contributor of maintainability, and

a number of complexity measures were presented.

Chapter 3 considers each of these metrics in greater

detail, and picks the metrics which will be implemented.

37

III. Metric Selection

The literature review of Chapter 2 examined several

approaches to quantifying software quality. Two models of

software quality, five categories of complexity measures, and

several complexity metrics described how it can be modeled

and ultimately measured. Still, the measurement of software

quality is not an exact science although studies indicate

that some metrics can produce useful results. This thesis

uses selected metrics to indicate software maintainability

while recognizing that

[metrics] is still a primitive technology and should be
used by management and engineering as a tool to augment
good judgement, not to replace it [Boehm and others,
1980:219].

The sponsor's present software review process is based

on a software evaluation methodology (Peercy, 1981:343-351)

which uses a closed-form questionnaire to determine software

maintainability. A small evaluation team composed of at

least five people who are knowledgeable about the software

and maintainability answers a series of questions to provide

enough specific information to identify for which parts
of the software and for what reasons maintainability may
be a problem [Peercy, 1981:343].

The questions prompt each evaluator on the team to quantify

his subjective opinion about how well the software under

review reflects desirable quality characteristics. Both

documentation and source listings are reviewed. According to

the methodology, at least 10 percent of all the modules in a

JOVIAL (J73) program must be selected at random and reviewed

38

to insure the results are valid for the entire program.

(Peercy, 1981:343-346; AFOTECP 800-2, Vol. 3, 28 Jan 88)

This thesis proposes that the sponsor's present manual

review be augmented with selected metrics to provide a list

of all the JOVIAL (J73) modules ordered from least to most

maintainable. Because the manual review uses a relatively

small sample of modules to indicate the maintainability of

the entire program, most modules are never checked. A list

indicating the relative position of all modules would permit

some conclusions to be drawn about the unchecked modules

based on the ones that were reviewed.

Criteria

The literature search indicates that certain metrics do

measure maintainability (actually complexity), but they must

be identified for implementation. However, each metric that

is selected must meet criteria which support the problem,

scope, and limitations of this study. The metric must:

- have empirical support,

- be applicable to JOVIAL (J73), and

- be automatable.

Empirical support for a metric was originally specified in

the scope of this thesis effort. Of course, the metric must

be applicable to JOVIAL (J73) or it would not be of any

interest in this study. The last criteria was not included

at the start of this effort, but became apparent through the

literature search.

39

A metric which has empirical support is one that has

been implemented and used in at least one significant

experiment that concluded the metric did produce results

which were consistent with the expected outcome. While this

is by no means rigorous proof of the metric's validity, it is

positive support of the metric's usefulness given the current

state of software quality measurement. Although the kinds of

systems studied and the quality of research varies so widely

that strict comparison of results is nearly impossible, a lot

of the research was done well and added significantly to the

knowledge of metrics (Curtis, 1979:97). Since empirical

support was a part of the scope, only metrics meeting it were

reviewed in Chapter 2.

One might expect large software systems to be written in

high-order languages (HOLs) to take advantage of the many

well-documented benefits of HOLs over low-level languages.

Since all of the metrics studies reviewed for this effort

used HOLs (primarily FORTRAN but also some COBOL, Pascal, and

even Ada!), this is apparently a good assumption. Many of

the studies implied that a primary requirement of a metric is

that it have general application to any programming language

even though HOLs only were used. In any case, all of the

metrics discussed in Chapter 2 may be applied to JOVIAL (J73)

since it is a HOL.

Any metric that this study selects for implementation

must be automatable since these metrics are supericr to those

40

............ d I i e a _ m I J

which must be computed manually. While all metrics may be

manually computed, doing so may actually be self-defeating.

In fact, if to evaluate a metric requires an expert to
read a program and make a judgment, the numerical value
will generally provide much less insight than the
understanding that the expert will pick up in the
evaluation process [Boehm and others, 1980:2221.

Automated metrics alleviate tedious, error-prone work, remove

the possibility of human bias in the computations, and are

much faster than manual methods (Basili and Reiter, 1979:107-

108). Once an analysis algorithm has been decided upon and

implemented, the metric is computed in the same manner from

then on. The people reviewing the software are free to

concentrate on the quality of the software rather than the

use of the software.

However, not all proposed metrics are automatable since

some types of analysis are uniquely human in nature ana can't

be performed through programmed algorithms. A metric is

automatable if:

"(M) The data can be collected without interfering with
individuals involved in the development,

(2) the measures are computed algorithmically from
quantifiable sources normally available, and

(3) the measures can be reproduced on other projects by
essentially the same algorithms" (Basili apd Reiter,

1979:107).

Because of the way this study will use the selected

metrics, all of these requirements are easily met. First,

the metrics will be computed from released (or product)

code. No interference with the developers is possible since

they have already finished their work. Second, source code

41

will always be available since the sponsor's method uses it

as well. Finally (and most importantly), the metrics can be

used directly on any set of JOVIAL (J73) modules. Especially

of value is the ability to compare metrics computed on future

versions of the same program.

The use of automated metrics to measure software quality

was considered in the software evaluation methodology used in

the sponsor's manual review but was rejected

because of the number of software systems to be
evaluated, the variability (language, computer,
functions) of the software to be evaluated, and the
limited state of the art in practical automated
evaluation tools [Peercy, 1981:343].

This study recoginizes these limitations but overcomes

them by applying selected metrics under certain situations.

A general assessment of software quality is not required--

only the maintainability of JOVIAL (J73) modules. These

results may then be used to rank all of the modules from

least to most maintainable. The sponsor can then use this

list to decide the probable maintainability of modules that

the evaluation team did not review.

Comparison

The possible implementation of each metric introduced in

the previous chapter will be discussed. The primary interest

in this section is whether the metric meets the selection

criteria explained above.

The lines of code (LOC) metric is the oldest and most

used measure of software size. It holds this distinction

42

because it is a simple measure that is relatively easy to

compute, and it applies quite well to programming languages

which allow only one line of code to a physical line in a

source program (for example, FORTRAN, BASIC, or assembler).

Size metrics like LOC are based on the assumption that a

larger program is more complex so the lines of source code

may simply be counted to produce the metric (Harrison and

others, 1982:66). Unfortunately, actual computation has

never been that simple since disagreement over what makes up

a "line of code" has always persisted. The argument has

traditionally centered on whether data declaration and

comment lines should be counted along with executable source

lines of code. More important to this study is a relatively

new point of disagreement: counting logical lines of code.

Used extensively in modern HOLs, logical lines extend over

several physical lines, and computation of the LOC metric is

more difficult because some counting algorithm must be used.

Although various solutions to this problem may be found, no

single, clear-cut answer is available. Despite the empirical

support for the LOC metric, it does not appear useful to this

study due to computational difficulties caused by the lack of

a definite algorithm for handling the free-form coding style

permitted in JOVIAL (J73) (a physical line of code does not

equate to a logical line of code). (Levitin, 1986:314-315)

The statement count metric evolved because the LOC

metric proved to be less applicable to modern HOLs. Though

not a definition, a statement may be considered a single

43

. I-I

logical line of source code. Although the perspective is

different, the statement count metric has definition problems

very similar to those of the LOC metric. Most modern HOLs

permit the use of structured statements such as compound

statements (delimited by BEGIN-END), repetitive statements

(WHILE, REPEAT, and FOR), and conditional statements (IF and

CASE). All contain embedded statements, and this greatly

confuses the metric computation since some algorithm for

counting these structured statements must be used. While

most languages are strongly statement-ori(eft-d-,some--don't

even support the concept of a statement (for example, APL,

LISP, and PROLOG). Terminology is also a problem since a

statement may be known by different names in different

languages. These problems make the statement count metric

undesirable for use in this study. (Levitin, 1986:315)

The token count metric is a further refinement of the

two metrics discussed above. While the LOC metric measures a

physical line of code and the statement count metric measures

a logical line of code, the token count metric measures the

tokens which every line (physical or logical) of source code

can be broken into. A token is

the basic syntactic unit from which a program can be
constructed. Each token represents a sequence of
characters that can be treated as a single logical
entity. At the same time, these entities are atomic,
i.e., they have no possible further subdivisions
[Levitin, 1986:316].

As an example, consider the following program fragment.

AA = BB ** 2;

44

This line of code contains six tokens. Two tokens represent

variable names (AA and BB), two tokens represent operators

(= and **), one token represents a numeric literal (2), and

one token represents a line of code terminator (;). An

important consideration of the token count metric. is that

tokens are always the first product of the compilation

process so the metric may be obtained for any language. One

significant disadvantage is that a large program will contain

an enormous number of tokens. This should not be considered

a serious detriment since the numerical values of many

metrics can be quite large. The token count metric can be

easily automated for JOVIAL (J73), and appears useful for

this study. (Levitin, 1986:315-316)

Software Science metrics are among the most widely known

and used software measures (Harrison and others, 1982:65).

Two of them, length and volume, are of interest in this

study. All of the Software Science metrics are based on

counts of so-called operators and operands. Generally, an

operand may be considered to be any variable or constant and

an operator to be any symbol affecting the operands (Lecciso

and others, 1986:605-606). The metrics are defined as:

Length N = N1 + N2

Volume V = N * log 2 (n, + n2

where nI is the number of unique operators
n is the number of unique operands
1 is the total number of operator occurrences

N2 is the total number of operand occurrences
(Lecisso and others, 1986:606; Levitin, 1986:316)

45

Looking at these definitions, it can be seen that length

is simply a total of the operands and operators in a program.

This is very similar to the previously discussed token count.

Volume is m3re complex since it involves a base-2 logarithm.

This metric attempts to provide a measure of the bits needed

to contain the program in the computer's memory. Both of

these measures suffer from unsupported assumptions. First,

no clear, unambiguous definition of operators and operands

exists. This alone casts a questionable shadow on the value

of any of the Software Science metrics since a cornerstone of

research is repeatability. Second, no logical reason exists

for the equations of some of the metrics, such as volume.

Even though the length and volume metrics have impressive

empirical support, these criticisms appear serious enough to

avoid using either metric in this study. (Lecciso, 1986:605-

608)

The Cyclomatic Complexity Number, V(G), is based on the

assumption that complexity increases as the number of control

flow paths through a program increase. Of course, loop

instructions make a simple count of control paths impractical

since the number could be infinite. To avoid this, the

Cyclomatic Complexity Number is defined as the "maximum

number of linearly independent circuits in the flow graph"

(Bugh, 1984:10). "Simply stated, [this] metric counts the

number of basic control path segments in a computer program"

(Curtis, 1979:99). Since each path represents an important

link in understanding the logic of the program, this metric

46

provides an intuitive measure of complexity (Henry and

others, 1981:144). In mathematical form, the computation is

V(G) = # of edges - # of nodes + 2p

where an edge represents a branch in the program control
logic

a node represents a section of sequentially
executed statements

p represents the number of connected components in
the flow graph

(Curtis, 1979:99)

The Cyclomatic Complexity Number has been criticized as

being unable to adequately measure the complexity of nested

control structures. Consider the following two fragments.

if P1 then if P1 then
if P2 then Sl

Sl else S2
else S2 if P2 then

else S3 S3

Each structure performs a different task yet both have the

same Cyclomatic Complexity Number. More importantly, the

one on the right seems simpler to understand. However,

empirical results of this metric have been good, and its

theoretical basis is sound, so the Cyclomatic Complexity

Number appears useful to this study. (Lecciso and others,

1986:608)

Data metrics assume that a more complex program will

contain more data item declarations and references to those

items (Hutchins, 1985:17). Three of these metrics were

discussed in Chapter 2: a count of data item declarations,

the span between data item references, and global data usage.

All may be considered important measures of complexity since

47

the execution of a computer program normally implies
input of data, operations on [the data], and output of
the results of these opeations in a sequence determined
by the program and the data [Fosdick and Osterweil,
1976:306].

Data count metrics involve a count of the data items

input, output, or declared in a program. A more complex

program is expected to have more data items. However, a

simple count of data items is not sufficient to compute the

metric. Care must be taken to include only items which are

actually referenced. In addition, some data items which

don't contribute to the solution of the task must also be

excluded from the count. Although computation of this metric

appears to be algorithmic, it is actually subjective (Conte

and others, 1986:50). This, combined with a lack of useful

empirical evidence, make this metric undesirable for use in

this study. (Conte and others, 1986:48-50)

Data span metrics measure the number of statements that

occur between two successive references to the same data item

(Conte and others, 1986:56). They are "based on the locality

of data references within the program" (Harrison and others,

1982:67). Although this metric has been used in at least one

study (Elshoff, 1976:116), little empirical evidence exists

to support it. Furthermore, data span suffers from the same

definition problem as the statement count metric since both

measures depend on statements. If a statement cannot be

adequately defined, the measure is probably not repeatable.

Because of these problems, the data span metric is not

suitable for use in this study.

48

Global data usage metrics measure the amount of data

that is declared in one component and referenced in others.

This is especially important since modern HOLs usually allow

data item declarations to be made in separate modules and

globally referenced. Program complexity is felt to increase

as the number of "shared" data items increases (Conte and

others, 1986:57). The theoretical basis of this metric

appears valid and data flow analysis techniques are easily

automated. The global data usage metric meets all of the

selection criteria and appears to be useful to this study.

(Conte and others, 1986:47-59)

The information metric extends the techniques of data

flow analysis to deal

directly with the system connectivity by observing the --

flow of information or control among system components
[Henry and Kafura, 1981:511].

It assumes that the complexity of a segment of source code

depends on two factors: the code within the segment, and the

segment's environmental connections.

This approach has some advantages. The metric reflects

connectivity between segments better than other metrics since

passed parameters and global data structures are considered.

It indicates "module coupling, level interactions, and stress

points" because the data items passed in and out of a segment

are measured (Henry and Kafura, 1981:511). Some metrics

concentrate on a single characteristic of complexity, but the

information flow metric uses both size and data since segment

length and data flow are measured. Finally, data flow

49

techniques are fairly standard and can be automated without

much difficulty. The information metric is defined as

length * (fan-in * fan-out)2

Length refers to a measure of the size of the module, and

indicates the module complexity component of the metric. To

compute length, the originators of the information metric

used LOC for convenience, but noted that other metrics such

as the Cyclomatic Complexity Number had stronger empirical

evidence. The token count metric is preferred in this study

for convenience as well as the reasons discussed earlier in

this section. Fan-in is the number of parameters passed into

a module plus the number of data items the module accesses

globally. Fan-out is the number of parameters passed from a

module plus the number of data items the module updates

globally.

The term fan-in * fan-out represents the total possible
number of combinations of an input source to an output
destination. The weighting of the fan-in and fan-out
component is based on the belief that the complexity is
more than linear in terms of the connections which a
procedure has to its environment [Henry and Kafura,
1981:5131.

The power of two was selected as the weighting factor because

other studies had used it to relate human interaction with

software. This metric appears to have a valid theoretical

basis and is easily automatable. It seems to be a strong

indicator of complexity and useful to this study. (Henry and

Kafura, 1981:510-517)

Hybrid metrics are measures of software quality composed

of either a suite of metrics like the ones already discussed

50

or a single metric that incorporates more than one underlying

theoretical measurement concept into one approach. While a

suite of metrics sounds appealing, several problems exist.

First, the individual metrics must be independent of one

another to avoid a simple duplication of information. Some

studies have been done to determine independence, but the

results are not totally conclusive since the applications and

usages are so varied. Second, guidance for interpreting the

results is not readily available. An improvement of one

software quality is often gained at the expense of another

(Boehm and others, 1980:220). Given a group of metrics that

indicate one quality is low, another is high, and so on, how

does one make an overall evaluation? The combined metric may

be a more plausible approach if the theoretical basis can be

shown (at least empirically). However, very few studies to

do this have been conducted. While hybrid metrics are

intuitively appealing, the problems associated with their

interpretation and theoretical foundations make them unuseful

for this study.

Selection

The preceding section discussed each metric studied in

this thesis to identify the ones that appeared to be the most

beneficial to implement. Particular emphasis was placed on

those metrics with solid empirical evidence as well as on the

other two criteria, applicability to JOVIAL (J73) software

and automatability. Although each metric has been given

51

equal treatment up to this point, the sponsor had initially

expressed a desire to de-emphasize size and control metrics

in the selection process. Accordingly, emphasis will be

shifted away from size metrics even though these are the

oldest, most studied metrics and,

in general, metrics based on measures of program size
have been the most successful to date, with experimental
evidence indicating that larger programs have greater
maintenance ccsts than smaller ones [Li and Cheung,
1987:707].

However, the sponsor felt that

[size metrics are] too simplistic since the length of
a piece of code is not a complete indicator of its
complexity. The tasks performed, the control
structures used, and the program variables referenced
also contribute to complexity [McClure, 1978:1501.

Likewise excluded from true consideration, control measures

have been shown to produce useful results.

Evidence continues to mount that metrics developed from
graphs of the control flow are related to important
criteria such as the number of errors existing in a
segment of code and the time to find and repair such
errors [Curtis, 1981:210].

But some studies have failed to show the usefulness of the

control metrics. Taking a fresh look at some of the newer

metrics could identify ones that might measure software

maintainability even better than size and control metrics.

In the interest of completeness, however, all five of the

metrics categories presented in Chapter 2 were reviewed.

The comparison of the metrics introduced in Chapter 2

identified several metrics which may be implemented in this

study. Included are:

52

- token count metric

- Cyclomatic Complexity Number

- global data usage metric

- information metric

Based on the sponsor's guidance, token count and Cyclomatic

Complexity Number will be removed from further consideration

for implementation in this thesis. This leaves these metrics

as this study's candidates for implementation:

- global data usage metric

- information metric

Implementation of both of these candidate metrics is not

possible in this study due to time constraints. To make the

choice, consideration must be given to the problem to be

solved, the resources needed by the solutions, and the

theoretical basis of the approaches. The goal of the metric

selected is to indicate the degree to which a JOVIAL (J73)

program possesses the software quality of maintainability.

To do this, the complexity of the program will be measured

because maintainability cannot be measured directly. Since

each candidate is a complexity metric, each is capable of

solving the problem.

The global data usage metric can only be computed if a

complete view of all the data items in the program is

available. Local data declarations are easy to handle but

global data declarations greatly complicate computation of

the metric. Although good JOVIAL (J73) programming technique

requires that global items should only be referenced through

53

a particular mechanism, the language does not require it.

This means that an accurate measure can be made only if the

entire program is analyzed at once. This is a giant task for

a large JOVIAL (J73) program since it may be composed of

many segments.

On the other hand, the information metric may be

computed on individual segments (Henry and Kafura, 1981:512).

This alleviates the need to analyze the whole program at one

time, and greatly reduces the amount of work required to

implement the metric.

While the selection criteria is equally fulfilled by

each metric, the information metric may have a slightly

better measurement capability because it uses two views of

complexity rather than just one. The global data usage

metric employs a data view of complexity since it measures

the amount of data that is declared in one segment and used

in another. The information metric employs both a data view

coupled with a size view of complexity since it measures the

amount of data flowing in and out of a segment but factors

in the length of the s,.gment.

Based on its less demanding implementation and possible

extra capability, the information flow metric is selected for

implementation in this study.

Chapter 4 describes the implementation details that had

to be addressed to program the information metric for JOVIAL

(J73) in the Ada language.

54

IV. Implementation of Selected Metrics

In the previous chapter, the metrics studied in this

thesis were compared, and the information metric was selected

for implementation. This chapter describes the steps taken

to implement that metric, but before getting into the details,

a brief overview of the JOVIAL (J73) language is instructive.

Language Overview

JOVIAL (J73) is a high-order language (HOL) which is

currently accepted by the Air Force as a standard programming

language. It is a powerful, full-featured language that

provides these capabilities:

- modular construction of programs

- block-structured control statements (loops, IF, and
CASE)

- a restricted GOTO statement

- strong type checking to enforce data abstractions

- low-level control of machine-specific operations and
storage

- direct addressing of storage units

- assignment of implementation-specific machine
parameters to aid portability

(SofTech, 1988:1-7)

Several other features of special interest are: free-

form coding style, pointers, simple and composite data

structures, and direct linkage to code written in other

programming languages. The ability to easily link to other

languages is vital because JOVIAL (J73) contains no means to

directly input and output data. (FORTRAN subroutines are

55

frequently used to perform input/output operations.) The

language is used primarily for flight control, command and

control, and avionics applications where input/output

requirements are minimal. (SofTech, 1984:1)

As Figure 6 shows, a JOVIAL (J73) program consists of

only one main program module and none or more procedure or

compool modules. These modules are separately compiled and

linked together at a later time to form a complete program.

Each module contains statements, subroutines, or a mixture of

both, and is delimited by the reserved words START (at the

beginning of the module) and TERM (at the end of the module).

(SofTech, 1984:241-252)

PROGRAM PROCEDURE COMPOOL

START START START
declarations declarations COMPOOL
PROGRAM PROC declarations

PROC PROC* 0

PROC PROC

TERM TERM TERM

(ALGORITHMS + DECLARATIONS) DECLARATIONS ONLY

Figure 6. Three Kinds of JOVIAL (J73) Modules (SofTech,
1988:1-24)

56

Program execution begins in the main program module with

a special subroutine which starts with the reserved word

PROGRAM followed by the name of the complete program. Unlike

ordinary subroutines (which begin with the reserved word

PROC), no parameters may be passed into the PROGRAM

subroutine. Execution continues until the last statement in

the PROGRAM subroutine is reached, unless a termination

statement is found first. (SofTech, 1988:9-16 thru 9-21)

The variety of statements supported by JOVIAL (J73) is

quite diverse. Both simple and compound forms of these

constructs are permitted: simple and multiple assignments,

IF-ELSE, CASE, WHILE and FOR loops, and subroutine calls

(which may be either procedures or functions). (SofTech,

1984:183-208)

JOVIAL (J73) program structure is as rich as its

constructs. Several data structures are allowed: simple

data items, tables of simple data items, and blocks of data

declarations composed of simple data items and tables, as well

as nested blocks. A complete suite of data types including

signed and unsigned integers, fixed point numbers, floating

point numbers, enumeration values, character strings, bit

strings, and pointers are supported. (SofTech, 1984:53-108)

Adaptation Attempts

In an attempt to rapidly implement the information

metric, an effort to adapt either the JOVIAL Automated

Verification System (JAVS) or the Integrated Tool Set (ITS)

57

JOVIAL (J73) compiler was made. Since both these software

packages perform an in-depth analysis of JOVIAL (J73) code,

all the data needed to compute the metric would be readily

available. Unfortunately, several months passed before a

usable copy of JAVS could be obtained. This delay caused it

to be dropped from serious adaptation intentions. The ITS

compiler was much easier to get. After a preliminary review

of the source code, however, it became clear that the

compiler was a very complicated software package. It was

decided that enough time was not available to gain the

necessary familiarity needed to adapt the compiler to compute

the information metric.

A discussion with the contractor who maintains the ITS

compiler confirmed the wisdom of this decision. The compiler

has been modified many times since its initial release. It

was adapted to five host computers and configured for about

25 target computers. As the language matured, the compiler

became a mixture of old and new language features. In short,

modifications such as adding the capability to compute the

information metric could realistically be made only by

personnel who possess a lot of experience with ITS compiler.

This made the final option, writing new code, the only

alternative for this study. (Engimann, 1988)

Construction Analysis

With the decision to write new code made, the next step

was to determine exactly how to construct an analyzer to

58

compute the information metric. Since the sponsor had

requested that any new code be written in the JANUS/Ada

language, the implementation language was already selected.

To determine a suitable internal representation for the

analyzer, three questions had to be answered.

First, which features of JOVIAL (J73) affect the
computation of the information metric?

A language as rich as this has many features that must

be considered. The ones that will be addressed here include:

- program structure

- type declarations

- data declarations

- formulae

- built-in functions

- conversion

- statements

- subroutines

- externals

- directives

- define capability

- advanced topics

The information metric is defined in terms of the flow

of "effective parameters" through a segment of code (Henry

and others, 1981:145-147). A segment refers to any one of a

number of separate groups of code which form a single program

when taken together. Originally, this metric was validated

using the UNIX operating system ('-rsion 6) so a procedure

59

was assumed to be a segment (Henry and Kafura, 1981:513).

This was a logical choice since a program written in C (the

UNIX implementation language) consists of several independent

procedures that call and are called by one another (Waite and

others, 1987:278). A similar choice must be made for this

study. A JOVIAL (J73) structure that equates to a segment

must be identified. A JOVIAL (J73) program may be viewed as

a number of subroutines partitioned into modules to allow

separate compilation. This naturally suggests that a segment

is equivalent to a subroutine in this language. Even though

the metric is referenced to subroutines, emphasis remains on

both the passed parameters and shared global data structures;

a simple subroutine-by-subroutine analysis provides the data

needed to determine the information metric (Henry and Kafura,

1981:513).

Because a metric will be computed for each subroutine

that occurs within a module, an overall assessment of module

complexity is possible (Henry and Kafura, 1981:514). Main

program and procedure module complexity is a combination of

the individual subroutine complexities. Compool modules, on

the other hand, have an information metric of zero. The

purpose of a compool module is to help control shared global

data. A data item or subroutine that is externally declared

(DEF'd) becomes a shared global item since it can be

referenced (REF'd) by other modules (SofTech, 1984:236).

Subroutines may be declared in either the main program module

or a procedure module, but they may not be declared in a

60

compool module. It may contain only declarations: constant,

type, define, overlay, DEF specifications for data or

statements, and REF specifications for data or subroutines

(SofTech, 1984:243-248). Thus, a compool module has no

information flow since subroutines cannot be declared.

Type statements simply establish a data class and do

not contribute to the information metric except through the

length component.

Data declarations are important to the computation of

the information metric for two reasons. First, subroutine

formal parameter lists require a declaration for each entry.

If a procedure were defined like this

PROC CUBE'ROOT (NUMBER : ROOT);

then the variables NUMBER and ROOT would have to be declared

in the body of the procedure. Second, declared variables

that do not appear in the formal parameter list must be local

declarations and should not be considered information flow.

In JOVIAL (J73), a formula "describes the computation of

a value" (SofTech, 1984:117). Formulas are important to the

computation of the information metric because global data

structures may be referenced. If a global appears on the

right side of an assignment operator, it is fan-in to the

subroutine; if on the left, it is fan-out of the subroutine.

JOVIAL (J73) provides some predefined capabilities that

give the programmer a way of getting information that would

otherwise be inaccessible or difficult to calculate (SofTech,

1984:137). Built-in functions are invoked just like other

61

_7]

functions but do not have to be defined. Typically, these

subroutines offer low-level data manipulation capabilities.

Because of this, this study will not consider the returned

values as fan-in. References to global data structures in

the function argument, however, will be considered fan-in.

Variables are strongly typed in JOVIAL (J73), but ways

to convert from one type to another are provided. Sometimes,

the compiler does the conversion automatically, but other

times an explicit conversion is required (SofTech, 1984:161).

As with type statements, explicit conversion operators do not

contribute to information flow.

Statements in JOVIAL (J73) may be either simple or

compound. Simple statements "perform computations, control

program flow, and call [subroutines]" (SofTech, 1984:183).

Included are the following:

- assignment

- IF

- CASE

- LOOP

- EXIT

- RETURN

- ABORT

- STOP

- GOTO

- subroutine call
(SofTech, 1984:183)

62

I

Compound statements are groups of simple statements

delimited by the reserved words BEGIN and END. Assignment

statements were previously discussed in conjunction with

formulas. IF, CASE, and LOOP statements may use global data

structures (as predicates) but cannot update them. Thus,

only fan-in may occur in one of these statements. A single

letter variable name may be used in the LOOP statement. It

does not have to be declared and has no meaning outside of

the loop (SofTech, 1984:203). These single letter variables

should not be considered as information flow since they are

local declarations. EXIT, RETURN, ABORT, and STOP are

reserved words and make no contribution to information flow.

The GOTO statement is part of program control flow only; it

provides no information. The associated labels (which may

precede any statement) must be ignored. Subroutine calls

contribute directly to information flow. If the subroutine

is a procedure, the parameters (actual list) indicate both

fan-in and fan-out. If it is a function, the subroutine name

indicates fan-in while the parameters indicate fan-out (and

fan-in, if any).

A subroutine definition describes "a self-contained

portion of a program [that] interacts with its environment

through its parameters or global data" (SofTech, 1984:209).

The definition begins with the reserved word PROC followed by

the subroutine name, use attribute (recursive or reentrant),

parameters (formal list), and the subroutine body which may

be either simple or compound. A simple body consists of only

63

one statement while a compound body contains many statements

delimited by the reserved words BEGIN and END. It should be

obvious that subroutine definitions are the main structures

of concern in the computation of the metric. Even the main

code (begun with the reserved word PROGRAM) is a subroutine.

As described in the language overview at the beginning

of this chapter, a JOVIAL (J73) program may consist of three

kinds of modules: one main program module and none or more

procedure or compool modules. A module may be a mixture of

statements and subroutine definitions, and is provided to

support separate compilation (SofTech, 1984:235). Compiled

modules share parameters and data structures through external

names (SofTech, 1984:235). Names are declared external with

a DEF specification, and referenced with a REF specification.

Although DEF-REF relationships indicate global information,

it would be difficult to compute the information metric if

all these relationships in a program had to be found. To do

this, the entire program would have to be analyzed at once.

This approach has already been discussed and rejected in

Chapter 3. DEF-REF relationships will not used to compute

the metric.

Directives are reserved words that provide additional

information to the compiler (SofTech, 1984:255). As such,

they do not contribute to information flow.

JOVIAL (J73) provides a define capability which may be

used to "associate a name with a string...of text" (SofTech,

1984:279). Anyplace the name appears in a program, it is

64

replaced by the compiler with the string of text. Although

the defined name is not information flow (but may be treated

as a local declaration), the string could be information flow

if it contains references to global data structures.

Several advanced features are available in JOVIAL (J73).

Generally, they give the programmer the ability to work with

memory directly and communicate with low-level devices.

While these capabilities are useful in programs, they are of

little consequence to information flow.

Second, what data is needed to compute the information
metric?

The length, fan-in, and fan-out is needed to compute the

information metric for a subroutine. The metric formula

incorporates two factors of complexity: code and parameter

(Henry and Kafura, 1981:513). Length provides a measure of

code complexity. Although LOC was used in the original work

(Henry and Kafura, 1981:513), a token count will be used by

this study for reasons discussed in Chapter 3. The fan-in/

fan-out term of the formula provides a measure of parameter

complexity. The fan-in and fan-out of a subroutine will be

obtained from the definition parameters (formal list), the

call parameters (actual list), and the global data structures

which are referenced.

The formal parameter list separates fan-in and fan-out

names with a colon. If no colon is included, all the names

are assumed to be fan-in. As this subroutine definition

shows:

65

PROC PICK'MIN (ANARRAY : MIN'NUM);

ANARRAY is the only fan-in name. The other name, A'NUM, is

a fan-out name. Now consider this definition:

PROC PICK'MIN (ANARRAY);

In this case, only one parameter is shown, and it is fan-in.

The next definition illustrates the final case:

PROC PICK'MIN (: MIN'NUM);

Again, only one parameter is shown but it is fan-out since a

colon precedes it. Note that it could be both fan-in as well

as fan-out but this cannot be determined since only syntactic

analysis is used. (SofTech, 1984:212, 217-222)

The actual list (used in a subroutine call) also uses a

colon as a separator. The parameters are arranged in the

order expected by the subroutine definition. The analyzer

must, therefore, reverse the fan-in and fan-out calculations

of the subroutine. This is illustrated in Figure 7.

fan-out
PROGRAM IN'OUT;

BEGIN fan-in

SQ ROOT (TOTAL : RESULT)

END fan-in

//fan-out

SQ'ROOT (NUMBER : ROOT);
BEGIN

END

Figure 7. Fan-in/Fan-out Reversal

66

Static analysis cannot determine whether a parameter

right of the colon in the actual list of a subroutine call

is only fan-in or both fan-in and fan-out. To compensate

for this, these parameters will be considered as both fan-in

and fan-out in every case. This is a conservative solution

since the risk of missing a flow of information is completely

eliminated. The information metric should, therefore, be

viewed as a conservative measure of complexity.

Simple syntax analysis can indicate whether a call is a

procedure or function call. All of the preceding subroutine

call examples are procedure calls since the returned value is

not assigned. An equivalent function call for the second

example is:

MIN'NUM = PICK'MIN (AN'ARRAY);

The value returned by the subroutine call is assigned to

MIN'NUM. This is a function call since, by definition, the

returned value must be assigned. (SofTech, 1984:215)

Since cross-referencing between modules will not be

done, names which are not declared locally will be considered

global data references. Consider this definition:

PROC PICK'MIN (A'NUM : MIN'NUM);
BEGIN
ITEM A'NUM U; % declarations %
ITEM MIN'NUM U;
ITEM TEMP'NUM U;
IF A'NUM < SUM; % executable statements %

TEMP'NUM = A'NUM;
ELSE

TEMP'NUM = SUM;
MIN'NUM = TEMP NUM;
END

67

The declarations for A'NUM and MIN'NUM are required because

they appear in the formal list. TEMP'NUM is also declared

but it is a local declaration since it was not in the formal

list. Any other name used in the executable statements will

be interpreted as a reference to a global data structure. In

this example, SUM will be taken as a global data item.

Third, how can the analyzer be best structured for
computing the information metric?

Although any method of program development can be used

with Ada, object oriented design (OOD) is often selected

since the language provides many features which support OOD

concepts. To construct the analyzer using OOD, these steps

were followed:

- Identify the objects and their attributes.

- Identify the operations that affect each object and
the operations that each object must initiate.

- Establish the visibility of each object in relation to
other objects.

- Establish the interface of each object.

- Implement each object." (Booch, 1987:48)

Rigorous application of OOD was not necessary because

the design of the analyzer is based largely on compiler

design theory which uses a well-established structure. A

compiler performs two primary functions: analysis of the

source program, and synthesis of a corresponding machine-

language program. To do this, it is centered around a parser

which performs syntax-directed analysis of a source program.

A scanner provides the parser individual tokens for analysis.

68

After forming a structure based on the order in which the

tokens occurred, the parser invokes semantic routines to

determine the meaning of the structure. A code generator

finishes the analysis by producing machine-language code. A

complete compiler is illustrated in Figure 8.

sourc

l~ognScanner -0 Tkn
S yn ta c tic Se m an tic

(character P Stucture Routines

Intermediate

Atibute Optimizer
TablesE

(Used by all
phases of

the Compiler)

SCode

Generator

Target Machine Code

Figure 8. The Structure of a Syntax-Directed Compiler
(Fischer and LeBlanc, 1988:9)

To compute the information metric, JAMS needs only the

compiler front end. A scanner to provide the tokens and a

parser to determine syntactic structure are enough for this

application. In fact, the parser may even be a simple one

since semantic routines are not required. In OOD terms, two

objects are already known (the scanner and the parser) based

on compiler theory. The rest of the design was driven by OOD

69

techniques such as data hiding, abstraction, coupling, and

cohesion. (Fischer and LeBlanc, 1988:2-21)

This study uses recursive descent parsing, one of the

simplest parsing techniques known. As each token is

analyzed, a sequence may be recognized and a corresponding

parsing procedure invoked (Fischer and LeBlanc, 1988:36-37).

The advantage of this technique is that it is very simple to

apply. The disadvantage is that each parsing procedure must
N

be coded by hand. This is inefficient and time consuming

since changes are difficult to make. While this disadvantage

would be severe for a full compiler, it is not serious for

this application because the semantic routines are not used

and do not have to be written. Only syntax-directed analysis

is needed. (Fischer and LeBlanc, 1988:115,197-200)

The answers to these three questions provide the basis

for rules to construct an analyzer which will compute the

information metric for JOVIAL (J73) software. Specific rules

will make analyzer development more orderly and lessen the

risk of overlooking language features. Table 3 lists these

rules and introduces Figure 9.

Analyzer Construction

Although this design is not a strict OOD implementation,

it does emphasize the objects and their associated operations

required to analyze a JOVIAL (J73) program. Figure 10 shows

the analyzer structure produced by this methodology (Booch,

1987:47-59). JAMS is the analyzer's abbreviated name which

70

Table 3

Rules for JAMS Construction

Rule 1. An information metric will be computed for each
subroutine.

Rule 2. Since the information metric for a compool module
will always be zero, a token count will be provided
as a size metric.

Rule 3. Computation of the information metric will be based
on the number of tokens within a subroutine and its
"effective parameters" (Henry and others, 1981:145-
147) which are the passed parameters plus the global
data items that are referenced.

Rule 4. Type statements will not contribute'to information
flow.

Rule 5. Local declarations will not contribute to
information flow.

Rule 6. Reference to a global data structure in a formula
will be analyzed as follows: if on the right of an
assignment operator, it is fan-in; if on the left,
it is fan-out

Rule 7. Built-in function return values will not contribute
to information flow.

Rule 8. Reference to a global data structure in a built-in
function argument will be analyzed as fan-in.

Rule 9. Explicit conversion operators will not contribute to
information flow.

Rule 10. Reference to a global data structure in a IF, CASE,
or LOOP statement will be analyzed as fan-in.

Rule 11. Single letter LOOP variables will be treated as
local declarations.

Rule 12. GOTO statements and their associated labels do not
contribute to information flow.

Rule 13. The main program module PROGRAM subroutine will be
analyzed as a subroutine with no parameters.

-continued-

71

Table 3 - continued

Rules for JAMS Construction

Rule 14. An equal number of BEGIN and END statements will

indicate complete analysis of a subroutine.

Rule 15. Program modules will be analyzed separately.

Rule 16. DEFINE'd names will be considered as local
declarations. The associated string will be
analyzed for global references.

Rule 17. Parameters in the formal list of a subroutine
definition will be analyzed as follows: names to
the left of the colon are fan-in, names to the right
are fan-out.

Rule 18. Parameters in the actual list of a subroutine call
will be analyzed as follows: names to the left of
the colon are fan-out, names to the right are both
fan-in and fan-out.

Rule 19. If the subroutine is a function, the subroutine name
given in the call will be considered fan-in.

Rule 20. Module structure will always be assumed to be as
shown in Figure 9.

72

Main-program-module Structure

START
COMPOOL declarations

declarations and REF-s

PROGRAM program-name;
declarations

BEGIN
body of program (statements and subroutines)

local subroutines

END
subroutine DEF's

TERM

Procedure-module Structure

START

COMPOOL declarations

declarations and REF's

subroutine DEF's

TERM

Compool-module Structure

START
COMPOOL declarations

COMPOOL compool-name;
BEGIN
declarations and REF's

END
TERM

Figure 9. JOVIAL (J73) Module Structure (SofTech,
1988:9-17 thru 9-37)

73

00

4

>41

00

0

00

74

is short for JOVIAL Automated Metric System. Table 4 gives a

quick description of each object. Pseudocode i., eresented

and briefly discussed to illustrate the basic structure of

each object.

The top-level object of the analyzer is a procedure

called JAMS. It functions as the driver for the analyzer,

and is an important part of the structure. Having three

levels of abstraction minimizes the perturbations caused by

individual object modification and permits the easy addition

of future metrics. Pseudocode for this procedure is shown

in Figure 11.

procedure JAMS is
begin

print identification banner
call COMPUTEIFM

end JAMS

Figure 11. Pseudocode for the Procedure JAMS

As the program driver, JAMS outputs a banner which

identifies the analyzer and version number, then calls the

procedure to compute the information metric.

5

ko75
_

Table 4

JAMS Objects

Object Description

JAMS This object serves as the driver for
the analyzer. It also helps form an
abstraction which permits other metrics
computations to be easily added.

METRICPACKAGE This object contains the major analyzer
code. It computes the metric by using
the types, data structures, and
operations located within itself and the
other objects. Other metrics could be
included in this object and simply
called by the program driver, JAMS.

SCANNERPACKAGE This object breaks a JOVIAL (J73) source
module into tokens. Placing this
operation in a single object allows
token definitions to be changed easily
without directly affecting the rest of
the code. Other tasks such as case
conversion can be handled with no direct
visibility from other objects.

IOPACKAGE This object provides communication with
the user. It opens and closes the source
module and displays the analysis results.
Placing these operations in a separate
object provides the ability to make
changes to the user interface without
affecting the rest of the code. Some
changes that might be desirable include:
adding the capability to process batches
of modules, addition of software switches
to tailor the analysis, or re-design of
the display format.

DEFSPACKAGE This object is used to define a type
needed by the other three objects. It
has no body.

76

The mid-level object of the analyzer is a package

called METRICPACKAGE. It functions as the parser and does

the majority of the work in the analyzer. Only one metric is

implemented in this study so one operation, COMPUTEIFM, is

provided. Pseudocode for this package is shown in Figure 12.

package METRIC PACKAGE is
procedure COMPUTEIFM

end METRIC PACKAGE
package body METRIC PACKAGE is

procedure COMPUTE IFM is
instantiate an object for the token count
instantiate an object to hold the current token
declare the doubly-linked list (DLL) type
instantiate a DLL anchor object
declare OUT OF MEMORY exception
procedure ANALYZE -- determine length, fan-in, fan-out
procedure PRINT LIST -- compute and display IFM
procedure SUM ALL TOKENS -- compute tokens in module
begin -- start of-COMPUTEIFM

form a circular DLL
open the JOVIAL (J73) source
loop

get a token
exit loop if EOF
case token is

when reserved word =>
if PROGRAM or PROC then call ANALYZE
elsif DEF then get the next token

if PROC then call ANALYZE
when any other token => null

end case
end loop
sum all the tokens in the module
display the sum
display the length, fan-in, fan-out, and'IFM for

each subroutine analyzed
close the JOVIAL (J73) source

exception
when OUT OF MEMORY =>

display an error message
display the length, fan-in, fan-out, and IFM

for each subroutine analyzed before the
exception was raised

end COMPUTE IFM
end METRICPACKAGE

Figure 12. Pseudocode for METRICPACKAGE

77

Tokens from the source file are read one at a time, and

if either PROGRAM or PROC is found, the procedure ANALYZE is

called. Once the end of file marker (EOF) is reached, the

module token sum is computed and displayed, and then the

information metric for each subroutine is computed and

displayed. If the user-declared exception, OUT-OF-MEMORY, is

raised, the information metric is computed and displayed for

the subroutines that were analyzed before this occurrence.

Several data structures are used to hold the results of

intermediate computations in METRIC PACKAGE. Since nested

(to any depth) or multiple subroutines may be contained in a

JOVIAL (J73) module, a doubly-linked list is used to keep the

length, fan-in, and fan-out of subroutines already analyzed.

During the analysis, three singly-linked lists are used to

keep track of the fan-in, fan-out, and local declarations.

The procedure ANALYZE does most of the work. The code

in the body of COMPUTEIFM looks for a subroutine declaration

and calls ANALYZE when one is found. Pseudocode for ANALYZE

is shown in Figure 13. The name of the subroutine is read,

and a new node representing the subroutine is added to the

doubly-linked list. Next, the procedure GETFORMALPARMS is

called to search the subroutine definition formal list for

fan-in and fan-out parameters. Names are added to the

appropriate singly-linked list as they are found. Finally,

an evaluation loop is entered. Tokens are read, and parsed

with a large case statement.

78

procedure ANALYZE is
declare the singly-linked list (SLL) type
instantiate a SLL object for fan-in
instantiate a SLL object for fan-out
instantiate a SLL object for local declarations
procedure ADD SUBR -- add subroutine to DLL
procedure UPDATE SUBR -- update DLL
procedure ADD PARM -- add item to SLL
procedure GET FORMAL PARMS -- search formal list
function SEARCH PARMS return BOOLEAN -- search SLL
procedure REMOVE PARM -- remove item from SLL
procedure GET ACTUAL PARMS -- search actual list
procedure COUNT PARMS -- sum fan-in and fan-out
begin -- start of ANALYZE

get a token (it's the name of the subroutine)
call ADD SUBR
call GETFORMALPARMS
loop

get a token
case token is
when reserved word =>

if BEGIN then add 1 to the BEGIN count
elsif END then

add 1 to the END count
if END count = BEGIN count then

call COUNT PARMS
call UPDATE SUBR
exit the loop

elsif END count > BEGIN count then
call UPDATE SUBR
exit the loop

elsif PROC then
call COUNTPARMS
call UPDATESUBR
call ANALYZE -- recursive call

elsif DEF then
get the next token
if PROC then

call COUNT PARMS
call UPDATE SUBR
call ANALYZE -- recursive call

when identifier =>
if it's not already in either the fan-in,

fan-out, or local SLL then
call ADDPARM (put in local list)

end ANALYZE

Figure 13. Pseudocode for the Procedure ANALYZE

79

One of the two low-level objects, SCANNERPACKAGE,

provides the tokens to the parser. To do this, it skips

non-essential characters like blanks, spaces, tabs, and so

on, and grabs the essential characters to form the tokens.

Pseudocode for this package is shown in Figure 14.

A loop ensures that all non-essential characters are

bypassed until a valid token is formed. Most tokens are more

than one character long, so a character of state memory is

needed to hold the character that has just been read while

the next character is read. The data object NEXTCHAR is

used to implement this state memory. The procedure READ

takes a character from either the source file (if NEXTCHAR

is empty) or NEXTCHAR, and puts it into THISCHAR. Execution

of the procedures INSPECT and then ADVANCE is equivalent to

executing READ once. When the source file and NEXTCHAR are

both empty, an EOF token is returned. The token that a

character "belongs to" is determined with a large case

statement. The functions UPPER and CHECKRESERVED are hidden

within the procedure SCAN because nothing further up the

abstraction needs tbdm visible.

The other low-level object in the analyzer is the

package called IOPACKAGE. While the operations contained in

this object could be included directly in METRICPACKAGE, it

is more advantageous to have a separate object. This permits

modifications to the user interface without any impact to the

other objects in the analyzer. JAMS is invoked with a single

command line entry like

80

package SCANNER PACKAGE is
function SCAN return TOKENTYPE

end SCANNER PACKAGE
package body SCANNER PACKAGE is

instantiate an object to hold a character (THIS CHAR)
instantiate an object to hold a character (NEXTCHAR)
function SCAN return TOKEN TYPE is
procedure READ -- move a character into CHAR 1 from

-- either CHAR 2 or the source file
procedure INSPECT -- get character from source file
procedure ADVANCE -- move CHAR_2 into CHAR_1
procedure BUILD TOKEN is
function UPPER return CHARACTER -- lower to upper
begin -- start of BUILDTOKEN

call UPPER
put a character into the TOKENBUFFER

end BUILDTOKEN
function CHECKRESERVED return TOKENTYPE is
begin -- start of CHECK RESERVED

if the token in the TOKEN BUFFER is a reserved
JOVIAL (J73) word then
return RESERVEDWORD

else
return IDENTIFIER

end CHECK RESERVED
begin -- start of SCAN

loop
if no more characters can be read then return EOF

call READ
case THISCHAR is
when valid name character =>

call BUILDTOKEN
loop

call INSPECT
case NEXT CHAR is
when valid name character =>

call ADVANCE
call BUILD TOKEN

when others =>
if TOKEN LENGTH = 1 then

return CHARACTERLITERAL
else

return CHECKRESERVED
end case

end loop

end SCAN
end SCANNERPACKAGE

Figure 14. Pseudocode for SCANNERPACKAGE

81

jams myprog.jov

where the .jov extension is used by convention and is not

required by JAMS. The output is directed to the screen in a

simple format. Any portion of this interface could be easily

modified since these operations are encapsulated away from

the rest of the analyzer objects. Pseudocode for this

package is shown in Figure 15.

Package IOPACKAGE is
procedure OPEN SOURCE
procedure CLOSE SOURCE
procedure SAY TCM
procedure SAY IFM
procedure SAY -- overloaded operator
procedure SAY

end 10 PACKAGE
package body 10 PACKAGE is

instantiate a new integer package (INT 10)
instantiate an object to hold the source file name
instantiate an object for the source file name length
procedure OPENSOURCE -- get source file name from

-- command line and open file
procedure CLOSE SOURCE -- close source file
procedure SAYTCM -- display module token count
procedure SAY IFM -- display information metric
procedure SAY -- display a message
procedure SAY -- display a number

end IOPACKAGE

Figure 15. Pseudocode for IOPACKAGE

Each of the operations is used by METRICPACKAGE to

display the results of the analysis. The SAI operator is

overloaded; one operation displays strings and the other

displays natural numbers. Although only the SAY for strings

is needed for daily JAMS operation, the SAY for numbers was

used during development and was left for maintenance.

The last object, DEFSPACKAGE, is a specification only

with no package body. It simplifies the visibilities among

82

the mid and lower-level objects by containing a type and

some objects needed by all of them. The type definition for

a token (TOKENTYPE) is in this object. Both SCANNERPACKAGE

and METRICPACKAGE use the TOKENTYPE, the TOKENBUFFER, and

the TOKENBUFFER count. Both SCANNERPACKAGE and IOPACKAGE

use the source file name. Pseudocode for this package is

shown in Figure 16.

package DEFS PACKAGE is
instantiate the TOKEN TYPE
instantiate an object to hold the source file name
instantiate an object to hold the token (TOKEN BUFFER)
instantiate an object for the TOKENBUFFER character

count
end DEFSPACKAGE

Figure 16. Pseudocode for DEFSPACKAGE

Summary

A working analyzer that computes the information metric

has been implemented in JANUS/Ada. Volume 2 of this thesis

contains a complete code listing. Copies may be requested

from AFIT/ENG, Wright-Patterson AFB OH, 45433.

Ada can be a challenging language to use, especially on

a microcomputer, but good reference books make the task much

easier. The authors of several helpful books used in this

study are: Amoroso and Ingargiola, Booch, Skansholm, Stanley

and others, and R. R. Software.

Chapter 5 presents the analysis of some simple examples

(to test specific language constructs) and also some actual

F-16 flight software. Comparison of analyzer results with

the sponsor's present manual process results is addressed.

83

V. Analyzer Verification/Validation

The construction of a working analyzer was described in

Chapter 4. The rules used to build it were based on three

factors: JOVIAL (J73) features affecting computation of the

information metric, the data required to compute the metric,

and the underlying JANUS/Ada program structure.

Now JAMS must be tested to ensure that it computes the

information metric as expected. First, a few simple code

samples will be examined. Next, several actual F-16 flight

software modules will be analyzed. Although the results of

the sponsor's manual review process will not be available

for comparison with the analyzer results in this thesis, a

comparison plan is presented.

Simple Examples

The first example program is shown in Figure 17. It is

* a main program module which illustrates these language

features:

- item declarations

L - table declarations

- FOR-loop and IF statements

- subroutine definitions

t- subroutine function call statements

- subroutine formal parmeter list (fan-in only)

- subroutine actual parameter list (fan-out only)

Analyzer output is shown in Figure 18. As expected,

the main code (which begins with the reserved word PROGRAM)

84

START
PROGRAM FINDPRIMES;

BEGIN
CONSTANT ITEM LIMIT U = 100;
ITEM INDEX U = 1;
TABLE PRIMELIST (1:20);

ITEM PRIME U;
FOR I : 1 BY 1 WHILE I < LIMIT AND INDEX <= 20;

IF CHECKPRIME (I);
BEGIN
PRIME (INDEX) = I;
INDEX = INDEX + 1;
END

END
PROC CHECKPRIME (ARG) B;

BEGIN
ITEM ARG U;
FOR I : 2 BY 1 WHILE I < ARG;

IF (ARG / I) * I = ARG;
BEGIN
CHECKPRIME FALSE;
RETURN;
END

CHECKPRIME = TRUE
END

TERM

Figure 17. Example Program #1 (SofTech, 1988:9-19)

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System JAMS Version 1.0

Module Name: findprimes.jov

Length: 116

Subroutine Name Length Fan-In Fan-Out Info Flow

FINDPRIMES 66 1 1 66
CHECKPRIME 48 1 1 48

Figure 18. Analyzer Output of Example Program #1

is treated as a subroutine without a formal parameter list.

The other subroutine, CHECKPRIME, is defined after the main

code for use within the main program module only (it is not

DEF'd for external visibility). Normal analyzer output does

85

not show which parameters were used in the fan-in and fan-out

counts, but a special test version of JAMS which does display

them (plus the ones considered to be local declarations) was

made. The parameters for this program were:

Subroutine Fan-in Fan-out Local

FINDPRIMES CHECKPRIME INDEX LIMIT
INDEX
PRIMELIST
PRIME

CHECKPRIME ARG CHECKPRIME

With these available, the way JAMS analyzed this program

can be studied. Looking at FINDPRIMES, it may be seen that

all the local declarations are either items or tables. Since

no formal parameter list exists, this is expected. The table

declaration is treated as an unnamed table declaration which

is why the table entry item PRIME was included separately in

the local list. Notice, however, that INDEX appears in the

fan-out list. The statement

PRIME (INDEX) = 1;

was interpreted as a subroutine call with INDEX as fan-out

rather than the data structure reference it really is. This

reflects a limitation of the syntactic analysis technique.

Without the ability to determine the contextual meaning of

the code, JAMS cannot distinquish between a subroutine call

and a reference to a data structure. Turning to CHECKPRIME,

it may be seen that no local declarations are made. The item

ARG is declared but only because it is a parameter in the

86

• i i im ii iium m n llliImm mii .. . -

subroutine formal list. The assignment of a value to the
name CHECKPRIME identifies the subroutine as a function.

The second example program appears in Figure 19. It is

the same as the first example program, but instead of one

module, it has been re-written as three modules: a compool

module, a procedure module, and a main program module. This

arrangement illustrates two additional language features:

- module relationship

- DEF-REF relationship

Analyzer output for the compool module of this program

is shown in Figure 20. As noted in Chapter 4, the compool

module has no information flow since it is only a mechanism

for making items, tables, blocks, and subroutines visible to

many modules. Consequently, JAMS found no subroutines to

analyze. However, a token count was computed so at least a

size metric is provided.

Analyzer output for the procedure module of this program

is also shown in Figure 20. The one subroutine defined in the

module, CHECKPRIME, was analyzed. Using the special version

of JAMS, the fan-in, fan-out, and local declarations of the

procedure module were:

Subroutine Fan-in Fan-out Local

CHECKPRIME ARG CHECKPRIME

The item ARG is declared since it is in the subroutine formal

parameter list. As before, the subroutine is a function

6 since the subroutine name is assigned a value.

87

START % Compool Module %
COMPOOL CONSTRAINTS;

CONSTANT ITEM LIMIT U = 100;
REF PROC CHECKPRIME (ARG) B;

ITEM ARG U;
DEF ITEM INDEX U;

TERM

START % Procedure Module %
!COMPOOL ('CONSTRAINTS')
DEF PROC CHECKPRIME (ARG) B;

BEGIN
ITEM ARG U;
FOR I : 2 BY 1 WHILE I < ARG;

IF (ARG/I) * I = ARG;
BEGIN
CHECKPRIME = FALSE;
RETURN;
END

CHECKPRIME = TRUE;
END

TERM

START % Main Program Module %
!COMPOOL ('CONSTRAINTS');
PROGRAM FINDPRIMES;

BEGIN
TABLE PRIMELIST (1:20);

ITEM PRIME U;
INDEX = 1;
FOR I : 1 BY 1 WHILE I < LIMIT AND INDEX <= 20;

IF CHECKPRIME (I);
BEGIN
PRIME (INDEX) = I;
INDEX = INDEX + 1;
END

END
TERM

Figure 19. Example Program #2 (SofTech, 1988:9-39 thru 9-40)

Analyzer output for the main program module of this

program is shown in Figure 20, too. As in the first example

program, the main code is treated as a subroutine. It is

the only code in the module since the subroutine CHECKPRIME

88

LI

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . . JAMS Version 1.0

Module Name: constraints.cpl
Length: 29

No subroutines to be analyzed!

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . . JAMS Version 1.0

Module Name: checkprime.jov
Length: 54

Subroutine Name Length Fan-In Fan-Out Info Flow

CHECKPRIME 48 1 1 48

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . JAMS Version 1.0

Module Name: findprimes.jov

Length: 64

Subroutine Name Length Fan-In Fan-Out Info Flow

FINDPRIMES 57 3 1 513

Figure 20. Analyzer Output of Example Program #2

is declared in a procedure module. The fan-in, fan-out, and

local declarations of main program module were:

Subroutine Fan-in Fan-out Local

FINDPRIMES INDEX INDEX PRIMELIST
LIMIT PRIME
CHECKPRIME

A table and an item are declared. Since the main subroutine

does not have a formal parameter list, these must be local

declarations. The item INDEX is now declared in the compool

module and must be fan-in to this module. A statement is now

used to assign it the initial value of 1 rather than using

89

the declaration. The item LIMIT is also declared in the

compool module and must be fan-in, too. As in the first

example, CHECKPRIME is fan-in since it represents a returned

function value. INDEX is still considered fan-out since the

statement fragment PRIME (INDEX) is interpreted as a function

call rather than a table entry reference.

The third example program is shown in Figure 21. It

consists of four modules: two compool modules, one procedure

module, and a main program module. Some important language

features illustrated by this program are:

- multiple compool use

- label use

- status types

- subroutine procedure call

- subroutine formal parameters (both fan-in and fan-out)

- subroutine actual parameters (both fan-out and fan-in)

Analyzer output for both compool modules is shown in

Figure 22. As in the previous example, no subroutines were

analyzed since no information flow occurred. A token count

is provided the information metric is not computed.

Analyzer output for the procedure module is also shown

in Figure 22. The fan-in, fan-out, and local declarations of

the two subroutines declared in the module were:

Subroutine Fan-in Fan-out Local

GETCHANGE ANYPRICE ANYCHANGE
ANYTENDER
ANYCHANGE

NEEDMORE MESSAGE

90

START % Compool Module %
COMPOOL MOREDEFS;

CONSTANT ITEM NUM U 5 = 30;

TYPE DAYS STATUS (V(SUN), V(MON), V(TUE), V(WED),
V(THU), V(FRI), V(SAT));

TERM

START % Compool Module %
!COMPOOL ('MOREDEFS);
COMPOOL DEFINITIONS;

DEF TABLE SALES (1 NUM, V(SUN) : V(SAT));
BEGIN
ITEM PRICE F;
ITEM TENDER F;
ITEM CHANGE F;
END

REF PROC GETCHANGE (ANYPRICE, ANYTENDER, Li
ANYCHANGE);

BEGIN

ITEM ANYPRICE F;
ITEM ANYTENDER F;
ITEM ANYCHANGE F;
LABEL Li;
END

REF PROC NEEDMORE (MESSAGE);
ITEM MESSAGE C 20;

TERM

START % Procedure Module %
!COMPOOL ('MOREDEFS);
!COMPOOL ('DEFINITIONS');
DEF PROC GETCHANGE (ANYPRICE, ANYTENDER, Li ANYCHANGE);

BEGIN
ITEM ANYPRICE F;
ITEM ANYTENDER F;
ITEM ANYCHANGE F;
LABEL Li;
ANYCHANGE = ANYTENDER - ANYPRICE;
IF ANYCHANGE < 0.0;

GOTO Li;
END

DEF PROC NEEDMORE (MESSAGE);
BEGIN
ITEM MESSAGE C 20;
MESSAGE = 'NEED MORE MONEY!';
END

TERM
- continued -

Figure 21. Example Program #3

91

- continued -

START % Main Program Module %
!COMPOOL ('MOREDEFS');
!COMPOOL ('DEFINITIONS');
PROGRAM MAKECHANGE;

BEGIN
ITEM NOTE C 20;
FOR I : 1 BY 1 WHILE I < 10;

FOR J : V(SUN) THEN NEXT (J, 1) WHILE J <= V(SAT);
GETCHANGE (PRICE (I,J), TENDER (I,J), ERROR1
CHANGE (I, J));

STOP;
ERROR1 : NEEDMORE (NOTE);
END

TERM

Figure 21. Example Program #3 (SofTech, 1988:9-44 thru 9-46)

Taking the subroutine GETCHANGE first, all the item

declarations were required for the names, except one, in the

formal parameter list. The label Li was not considered to be

fan-in even though it was passed into the subroutine. JAMS

always ignores a label since it indicates the next executable

statement when a branch to it is taken, and this is control

flow rather than information flow.

Next, NEEDMORE is examined. The single item declaration

is required for the fan-out parameter MESSAGE. This item is

simply assigned a string value and passed back to the calling

subroutine.

Analyzer output for the main program module is shown in

Figure 22. The fan-in, fan-out, and local declarations were:

Subroutine Fan-in Fan-out Local

MAKECHANGE CHANGE PRICE NOTE
NOTE TENDER

92

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . JAMS Version 1.0

Module Name: moredefs.cpl
Length: 53

No procedures to be analyzed!

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . . JAMS Version 1.0

Module Name: definitions.cpl
Length: 86

No procedures to be analyzed!

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . JAMS Version 1.0

Module Name: makechgproc.jov
Length: 75

Subroutine Name Length Fan-In Fan-Out Info Flow

GETCHANGE 44 3 1 396
NEEDMORE 19 0 1 0

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . JAMS Version 1.0

Module Name: makechange.jov
Length: 91

Subroutine Name Length Fan-In Fan-Out Info Flow

MAKECHANGE 79 2 2 1264

Figure 22. Analyzer Output for Example Program #3

One local declaration for the item NOTE was made. The

other parameters were used in subroutine calls. Notice that

the analyzer did not mistake indexed items like PRICE (I, J)

for subroutine calls even though this is very similar to the

statement that was discussed in Example Program #1. The

93

reason is that a single letter cannot be a variable name

(required to be at least two characters in length), and JAMS

ignores single letters.

Flight Software

Testing with simple examples is a good way to exercise

the analyzer to see if it correctly handles specific language

features that are presented in an expected manner. However,

actual software is the ultimate test since language features

may be used in any imaginable manner. JAMS will now be used

to analyze some F-16 Block 30B Fire Control Computer (FCC)

flight software. Analyzer results will be presented and

briefly discussed, but FCC source code will not be shown.

Figure 23 shows the analyzer output for a FCC procedure

module. Initial analysis of the module showed that pointer

names were being interpreted as either fan-in or fan-out.

Since a pointer simply points to data and is not, strictly

speaking, data, this study made the assumption that pointer

names carry no information and should not be included in fan-

in or fan-out. A minor change to JAMS mostly corrected this.

Pointers used in executable statements are ignored, but item

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System JAMS Version 1.0

Module Name: fxpuprng.jov
Length: 120

Subroutine Name Length Fan-In Fan-Out Info Flow

FXPUPRNG 82 10 7 401800

Figure 23. Analyzer Output for FCC Software - #1

94

declarations for pointers and pointers appearing in formal or

actual parameter lists are still analyzed normally.

Figure 24 shows the analyzer output for another FCC

procedure module. This module revealed a deficiency in JAMS

subroutine function call parameter analysis. A call similar

to this

FIND'ROOT (SUM'OF'SQS (A'VECTOR

was in the module. JAMS interpreted the parameters to be:

Fan-in Fan-out

FIND'ROOT SUM'OF'SQS
A'VECTOR

This is incomplete since SUM'OF'SQS should be listed as both

fan-in and fan-out since a value is returned from a function

call and then exported as a call parameter for FIND'ROOT.

Unfortunately, subroutine calls in the actual parameter list

was not a part of the design criteria used to implement JAMS,

and a simple fix could not be made.

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System JAMS Version 1.0

Module Name: agbrkway.jov
Length: 123

Subroutine Name Length Fan-In Fan-Out Info Flow

AGBRKWAY 91 4 12 209664

Figure 24. Analyzer Output for FCC Software - #2

Figure 25 shows the analyzer output for the last FCC

procedure module. Initial attempts to analyze the module

were unsuccessful because of arithmetic overflow errors. The

95

source of the problem was finally identified as numbers that

were too big for the JANUS/Ada type used (LONGINTEGER). As

a simple solution, the type was changed to FLOAT. This

caused the output display to look slightly different since

the metric is shown in scientific notation form.

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System . JAMS Version 1.0

Module Name: amvsim.jov

Length: 2490

Subroutine Name Length Fan-In Fan-Out Info Flow

AMVSIM 1919 62 55 2.23143E+10
AMTGT 275 20 13 1.85900E+07
AMVINIT 240 16 15 1.38240E+07

Figure 25. Analyzer Output for FCC Software - #3

Figure 26 shows the analyzer output for a FCC compool

module. As with any compool module, no subroutines were

analyzed. However, the length indicates that this module was

much larger than any of the procedure modules which were

analyzed. Although size may not be the best complexity

indicator, it is the only metric available and does provide a

relative measure between compool modules (Harrison and

others, 1982:66).

Air Force Institute of Technology (AFIT)
JOVIAL (J73) Automated Metric System JAMS Version 1.0

Module Name: ic0comp.cpl
Length: 9349

No subroutines to be analyzed!

Figure 26. Analyzer Output for FCC Software - #4

96

Both simple example and flight software testing revealed

a number of limitations of the analyzer. Some were easily

corrected on the spot, but others could not be fixed without

major, time-consuming changes to JAMS. Table 5 summarizes

the ones that remain. Even with these limitations, however,

the analyzer is useful because the information metric numbers

are repeatable and comparable (among modules).

Table 5

JAMS Limitations

1. Indexed references (using valid JOVIAL (J73) names) to
data structures are incorrectly interpreted as subroutine
calls.

2. Index variables (single letter) are not recognized at
all.

3. Pointer variables in declarative statements or a
subroutine formal parameter list are recognized.

4. Subroutine calls in a subroutine actual parameter list
are incorrectly analyzed.

5. A simple subroutine body (that is, only one statement
without BEGIN and END) is incorrectly analyzed.

6. Subroutine names in a subroutine formal parameter list
are not recognized as passed parameters.

7. DEFINE statements are incorrectly analyzed.

8. LIKE statements are incorrectly analyzed.

97

--

Comparison Plan

Once the analyzer has been constructed and checked out

with sample code, it is reasonable to expect a comparison of

the output with the results of the sponsor's present manual

review method. Unfortunately, the opportunity to do so will

not occur in time to be included in this thesis. The actual

process to make the comparison will not be too difficult, so

a plan for doing it is presented.

Flight software is revised periodically in what is known

as "block changes." A block change may involve many modules,

perhaps 200 or more. A maintainability review is performed

once the block change is received. As previously discussed

in Chapter 3, this is a manual process based on a closed-form

questionnaire completed by a small evaluation team (AFOTECP

800-2, Vol. 3, 28 Jan 88). Ten percent of the modules are

randomly selected and reviewed to form an overall indication

of program maintainability (Peercy, 1981:343-346).

A number to indicate maintainability is computed for

each module as well as the entire program (Telford, 1988a).

Evaluation team members answer questions using the following

scale:

completely strongly generally generally strongly completely
agree agree agree disagree disagree disagree

A point value is associated with each response. It ranges

from 6 (completely agree) to 1 (completely disagree). The

following steps are used to make the computations: A
98

1. For each question, all five answers (each evaluator's
response) are averaged.

2. For each module, the question average (computed in
step 1) for each question is averaged. This provides a
single number for each module.

3. For the program, the module average (computed in step 2)
* for each module is averaged. This provides a single

number for the program.

Thus, the individual modules can be ranked from least to most

maintainable by using the numbers produced in Step 2.

An analyzer that measures the maintainability of JOVIAL

(J73) software has been designed and implemented. Because it

computes the metrics automatically without human assistance,

all the modules in a program rather than a small sample can

be quickly analyzed and ranked.

With two methods to determine the maintainability of

JOVIAL (J73) modules available, this question arises. Are

the rankings computed by each method comparable?

A meaningful comparison depends on statistical methods.

Specifically, inferential statistics is applicable because

conclusions based on the data will be drawn and decisions

will be based on them (Daniel, 1978:1). The particular form

of inferential statistics used is called hypothesis testing

and may be defined as

the process of inferring from a sample whether or not
to accept a certain statement about the population
[Conover, 1980:1975].

A hypothesis set is formed by two statements called the

null hypothesis and the alternative hypothesis. The null(!
hypothesis is either accepted or rejected. The results of a

99

statistical test procedure provides the information needed to

make the decision. Statistical procedures may be classified

as either parametric or nonparametric. Typically, parametric

methods rely on definite assumptions about the population

distribution (a normal distribution curve is frequently

assumed), and most use at least an interval scale data. On

the other hand, nonparametric methods make less stringent

assumptions about the population. (Sometimes no assumptions

at all are made.) Furthermore, nonparametric methods may be

applied to nominal, ordinal, interval, or ratio scale data.

(Gibbons, 1985:10,11,22,23)

The Vee diagram shown in Figure 27 illustrates a

statistical solution to this question. The Vee heuristic

(originated by Novak and Gowin, Learning How to Learn,

1984:55-75) was designed to help focus on the question to be

answered and to distinquish between the concepts involved and

the methodologies used. The diagram graphically puts the

question, the problem, and the solution into concrete terms.

The sponsor's present method is predicated on the evaluation

team being unable to analyze all the modules in a program.

That's why having the ten percent (minimum) sample is so

important. The analyzer developed in this thesis provides

the capability of analyzing all the modules in a JOVIAL (J73)

program. But does that analysis produce results similar to

the results of an evaluation team? This is the problem that

the focus question highlights. The events or objects that

are important to this problem are shown at the bottom of the

100

Focus Question: Are the module rankings made by each
review the same or at least close?

concepts methodology

H 0: not associat Spearman rank

H : associated correlationa coefficient

Figure 27. Vee Heuristic for Method Comparison

Vee. In this case, n pairs of similarly ranked modules are

the objects. On the concept side, a null hypotheses (no

association between the pairs exist) and an alternate

hypothesis (some degree of association exists) are stated.

On the methodology side, the Spearman rank correlation

coefficient is the chosen statistic.

The Spearman rank correlation coefficient provides a

relative measure of the "agreement" between paired samples

which "represent the pairs of ranks of the original

observations" (Gibbons, 1985:275). At least an ordinal scale

must be used. The coefficient, R, may be defined as
2

6 E Di
R= .- 2n (n-1)

where Di represents the difference between any
two paired ranks, and

n represents the number of sample pairs

(Gibbons, 1985:277)

101

R is a number between -1 ("perfect disagreement") and 1

("perfect agreement"). Thus, when R is 0 no association is

indicated and the null hypothesis must be accepted. Figure

28 illustrates a simple application of this statistic.

Tables for finding the P-values for the calculated R may be

found in many statistics texts. (Gibbons, 1985:273-284)

module

Review Method AA BB CC DD

Manual 2 4 1 3
JAMS 1 3 2 4

The differences between the ranks, Di, are

1 1 -i -l

and the sum of their squares is

E Di (I) 2 + (1)2 + (-1)2 + (-i)2
= 4

Using the equation for R with n = 4 gives

6 (4)
R = 1 - =0.600

4 (15

Thus, the relative measure of association between
the rankings of the review methods is 0.600. From
a table (Gibbons, 1985:429-431), the exact P-value
is 0.208.

Figure 28. Applying the Spearman Tezt Statistic

If the null hypothesis is rejected, then some degree of

association between the review methods is statistically

indicated. This permits inference about the maintainability

of the modules which were not reviewed by the evaluation

team. However, if the null hypothesis cannot be rejected, no

102

association is statistically indicated and no inferences are

possible. If a comparison finds no association, a more in-

depth study will be required to determine why. Some work to

gather maintenance data which could be useful for this has

already been done (Peercy and others, 1987:74-77).

Several JOVIAL (J73) modules, both sample and actual,

were analyzed, and the results documented in this chapter.

Although the information metric computations performed by the

analyzer are not exact, the numbers are reasonable and should

be useful for determining maintainability. Since the data

needed to compare the analyzer results with the manual method

results was not available for this thesis, a plan to perform

the comparison when the data becomes available was described.

103

VI. Conclusions and Recommendations

The sponsor of this thesis, an AFOTEC unit responsible

for reviewing F-16 flight software changes, wants to improve

its ability to identify software that may be difficult to

maintain. Software metrics were proposed to augment the

sponsor s present manual review process.

This thesis researched the use of metrics with three

questions in mind:

- Do any metrics that are useful for measuring software
maintainability exist?

- If some do exist, do these metrics have empirical
evidence to support them?

- If empirical evidence does exist, are these metrics

applicable to JOVIAL (J73)?

While many metrics have been proposed, their capability to

indicate maintainability is often not addressed. This study

reviewed the underlying premises of selected metrics to

determine whether they were useful for measuring software

maintainability. Although empirical evidence is not actual

proof that a metric measures what it is intended to measure,

it is the only support currently available for metrics. As a

consequence, this study was concerned only with metrics that

had empirical support. Any metric designed for higher-order

languages (HOLs) was considered applicable to JOVIAL (J73).

A frequently-stated reason for using a metric is to

improve the "quality" of software, so a definition of quality

was sought. The meaning of quality varied so much, however,

that it was best described through a model. Two widely-used

104

models were described in the literature. Both models formed

a dichotomous structure with user-oriented characteristics at

one end and measurement-oriented characteristics at the

other.

Although maintainability could not be measured directly,

complexity was found to be a strong indicator. Complexity

refers to the interface between a software system and another

system (machine or human). Since software is maintained by

people, the interface is a human-software one (psychological

complexity). Using complexity to indicate maintainability

led to metrics that are algorithmic and automatable.

Only metrics that are repeatable and can be computed

without human assistance were felt useful to this study. A

measure must yield the same results when re-applied if

comparisions are to be made. It must also be possible to

mechanize the computation of the measure if a large software

system is to be analyzed.

Five categories of complexity metrics were reviewed to

determine whether any of them had empirical support and could

be applied to JOVIAL (J73). The categories reviewed were:

- size

- control

- data A

- information

- hybrid

Several individual metrics from each category were discussed.

Size and control metrics were included for completeness, but

105

were not seriously considered for implementation. One data

metric, global data usage, was selected but later rejected

because a complete analysis of the entire program is needed

to compute it. The information metric does not require this

and was selected. Hybrid metrics were rejected because very

little empirical support was available.

An analyzer that implemented the information metric was

constructed using JANUS/Ada. Since Ada is a highly portable

language and few JANUS/Ada library routines were used, the

analyzer is fairly portable. Object-oriented techniques were

used to design the analyzer although compiler theory did have

an influence.

Testing was performed with both simple code examples and

actual F-16 flight software. A plan to compare the metric

results with the manual review results was presented for

future study.

Conclusions

Constructing a tool to analyze JOVIAL (J73) proved to be

a challenge. The rich variety of syntax and data structures

provided by the the language plus the restrictions imposed by

syntax-directed analysis caused the analyzer to have a few

limitations.

Fortunately, the JANUS/Ada compiler proved to be a good

system, and very little trouble was encountered with the

mechanical aspects of building the analyzer. Using memory

model 1 with the trim option produced an executable module of

106

reasonable size (less than 85K). As with standard Ada, data

input and output in a JANUS/Ada program is primitive, so

invocation of the analyzer and the display of results was

kept as simple as possible.

Despite some limitations, the analyzer is a useful tool.

It correctly analyzes the majority of JOVIAL (J73) language

constructs, and always computes the information metric in a

repeatable manner. Although the numbers produced are not

exactly correct, they may be used to produce a rank-ordered

list of JOVIAL (J73) program modules. It may be possible to

infer the maintainability of modules which were not manually

evaluated by comparing this ranking with a ranking produced

by the sponsor's manual review process.

Recommendations

Several improvements to this analyzer could be made

without too much difficulty. Listed in order of suggested

implementation, these include:

1 - revising the procedure that analyzes the subroutine
call to recognize subroutines as actual parameters

2 - ensuring that single letter names are properly
recognized in all contexts

3 - ensuring that pointer names are ignored in all
contexts

4 - ensuring that subroutines as formal parameters are
recognized and not analyzed as nested subroutines

5 - ensuring that a simple subroutine body is properly
recognized

Other useful improvements are possible, but only with added

difficulty. These include:

107

6 - adding program logic to recognize and correctly
analyze DEFINE'd names and their references

7 - adding program logic to correctly analyze LIKE
statements

Other improvements are less critical to the computation

of the metric but are important for maximum use of the

analyzer. These include:

- re-designing the user interface to execute in either a
single file mode or a batch file mode

- re-designing the user interface to accept software
switches to tailor the analysis; output of certain
test data is the primary advantage

Finally, other metric computations could be added to the

analyzer. Data flow measures would be good candidates.

Summary

This study did accomplish its goals. Several measures

of software maintainability were identified. Based on metric

evaluation criteria, the information metric was selected and

implemented. Although the analyzer which was constructed

does have some limitations, it computes the metric correctly

in the majority of cases. Since the metric is automated, the

results are repeatable. Further, a review of an entire

JOVIAL (J73) program is possible since human evaluators are

not needed. This tool will improve the sponsor's ability to

identify the maintainability of JOVIAL (J73) software when

used in conjunction with the present manual review process.

108

Bibliography

Amoroso, Serafino and Giorgio Ingargiola. Ada - An
Introduction to Program Design and Coding. Marshfield,
Massachusetts: Pitman Publishing Inc., 1985.

Baker, Albert L. and Stuart H. Zweben. "A Comparison of
Measures of Control Flow Complexity," IEEE Transactions
on Software Engineering, SE-6, 6: 506-512 (November
1980).

Basili, Victor R. Quantitative Evaluation of Software
Methodology. Technical Report TR-1519. College Park
MD: University of Maryland, July 1985 (AD-A160202).

"Quantitative Software Complexity Models: A Panel
Summary," Tutorial on Models and Metrics for Software
Management and Engineering. 232-233. New York: IEEE
Computer Society Press, 1980.

Basili, Victor R. and Robert W. Reiter, Jr. "Evaluating
Automable Measures of Software Development," Workshop
on Quantitative Software Models for Reliability,
Complexity, & Cost: An Assessment of the State of the
Art. 107-116. New York: IEEE Publishing Services,
1979.

Belady, L. A. and M. M. Lehman. "The Characteristics of
Large Systems," Program Evolution: Processes of
Software Change, edited by M. M. Lehman and L. A.
Belady. Orlando FL: Academic Press, Inc., 1985.

Berns, Gerald M. "Assessing Software Maintainability," -|

Communications of the ACM, Vol. 27, No. 1: 14-23
(January 1984).

Boehm, Barry W. "Software Engineering," IEEE Transactions on
Computers, Vol. C-25: 1226-1241 (December 1976).

-. "Software and Its Impact: A Quantitative
Assessment," Datamation: 48-59 (May 1973).

Boehm, Barry W. and others. "Quantitative Evaluation of
Software Quality," Tutorial on Models and Metrics for
Software Management and Engineering. 218-231. New
York: IEEE Computer Society Press, 1980.

Boehm, Barry W. and others. Characteristics of Software
Quality. Amsterdam: North-Holland Publishing Company,
1978.

109

Booch, Grady. Software Engineering with Ada (Second
Edition). Menlo Park CA: The Benjamin/Cummings
Publishing Co., Inc., 1986.

-. Software Components with Ada: Structures, Tools, and
Subsystems. Menlo Park CA: The Benjamin/Cummings
Publishing Co., Inc., 1987.

Bowen, John B. "Are Current Approaches Sufficient for
Measuring Software Quality?," Special Joint Issue:
Performance Evaluation Review, Vol. 7, Nos. 3 & 4/
Software Engineering Notes, Vol. 3, No. 5: 148-155
(November 1978).

Bugh, Robert A. An Empirical Investigation of Control Flow
Complexity Measures. A paper submitted to the graduate
faculty in partial fulfillment of the requirements for
the degree of master of science. Iowa State University,
1984.

Canan, James W. "The Software Crisis," Air Force Magazine:
46-52 (May 1986).

Conte and others. Software Engineering Metrics and Models.
Menlo Park CA: Benjamin/Cummings Publishing Co., Inc.,
1986.

Conn, Alex Paul. "Maintenance: A Key Element in Computer
Requirements Definition," Proceedings of the Fourth
International COMPSAC. 394-400. New York: IEEE
Computer Society, October 1980.

Conover, W. J. Practical Nonparametric Statistics (Second
Edition). New York: John Wiley & Sons, 1980.

Curtis, Bill. "The Measurement of Software Quality and
Complexity," Software Metrics: An Analysis and
Evaluation, edited by Alan Perlis and others.
Cambridge, Massachusetts: The MIT Press, 1981.

. "In Search of Software Complexity," Workshop on
Quantitative Software Models for Reliability,
Complexity, & Cost: An assessment of the State of the
Art. 95-106. New York: IEEE Publishing Services,
1979.

Curtis, Bill and others. "Measuring the Psychological
Complexity of Software Maintenance Tasks with the
Halstead and McCabe Metrics," IEEE Transactions on
Software Engineering, Vol. SE-5, No. 2: 96-104
(March 1979a).

110

Curtis, Bill and others. "Third Time Charm: Stronger
Prediction of Programmer Performance by Software
Complexity Metrics," Proceedings of the Fourth
International Conference on Software Engineering.
356-360. New York: IEEE Publishing Services, 1979b.

Daniel, Wayne W. Applied Nonparametric Statistics. Boston,
Massachusetts: Houghton Mifflin Company, 1978.

Department of the Air Force. Software Maintainability -
Evaluation Guide. AFOTECP 800-2, Volume 3. Kirtland
Air Force Base, New Mexico: HQ Air Force Operational
Test & Evaluation Center, 28 January 1988.

Elshoff, James L. "An Analysis of Some Commercial PL/l
Programs," IEEE Transactions on Software Engineering,
Vol. SE-2, No. 2: 113-120 (June 1976).

Engimann, Bob, ITS JOVIAL (J73) Compiler Program Manager.
Telephone Interview. SofTech, Inc., Fairborn OH,
24 August 1988.

Fischer, Charles N. and Richard J. LeBlanc, Jr. Crafting a
Compiler. Menlo Park CA: The Benjamin/Cummings
Publishing Co., Inc., 1988.

Fosdick, Lloyd D. and Leon J. Osterweil. "Data Flow Analysis
in Software Reliability," Computing Surveys, Vol. 8,
No. 3: 305-330 (September 1976).

Freedman, Daniel P. and Gerald M. Weinberg. "Maintenance
Reviews," Techniques of Program and System Maintenance,
edited by Girish Parikh. Cambridge, Massachusetts:
Winthrop Publishers, Inc., 1982.

Gibbons, Jean Dickinson. Nonparametric Methods for
Quantitative Analysis (Second Edition). Columbus, Ohio:
American Sciences Press, Inc., 1985.

Gilb, Tom. Software Metrics. Cambridge, Massachusetts:
Winthrop Publishers, Inc., 1977.

Gustafson, David A. and others. "An Analysis of Software
Changes During Maintenance and Enhancement," Conference
on Software Maintenance. 92-95. Washington, D. C.:
IEEE Computer Society Press, 1985.

Hansen, Wilfred J. "Measurement of Program Complexity by the
Pair (Cyclomatic Number, Operator Count)," SIGPLAN
Notices, Vol. 13, No. 3: 29-33 (March 1978).

111!

Harrison, Warren and others. "Applying Software Complexity
Metrics to Program Maintenance," IEEE Computer Magazine:
65-79 (September 1982).

Henry, Sallie and Dennis Kafura. "Software Structure Metrics
Based on Information Flow," IEEE Transactions on
Software Engineering, Vol. SE-7, No. 5: 510-518
(September 1981).

Henry, Sallie and others. "On the Relationships Among Three
Software Metrics," Workshop/Symposium on Measurement and
Evaluation of Software Quality. 143-150. Washington,
D. C.: Association for Computing Machinery, March, 1981.

Howatt, James W. A Quantitative Characterization of Control
Flow Context: Software Measures for Programming
Environments. PhD Dissertation. Department of Computer
Science, Iowa State University, Ames, Iowa, 1985.

Hutchens, David H. Characterizing Sofware with Objective
Measurements. Phd Dissertation. University of
Maryland, College Park MD, 1985 (TR-1504).

Ivan, Ion and others. "Programs Complexity: Comparative
Analysis, Hierarchy, Classification," ACM SIGPLAN
Notices, Vol. 22, No. 4: 94-102 (April 1987).

Kafura, Dennis and Geereddy R. Reddy. "The Use of Software
Complexity Metrics in Software Maintenance," IEEE
Transactions on Software Engineering, Vol. SE-13, No. 3:
335-343 (March 1987).

Kearney, Joseph K. and others. "Software Complexity
Measurement," Communications of the ACM, Vol. 29, No.
11: 1044-1050 (November 1986).

Lecciso, Roberto and others. "Software Metrics: A Critical
Evaluation and an Application to Pascal,"
Microprocessing and Microprogramming, 18: '05-616
(1986).

Lehman, M. M. "The Role of Systems and Software Technology
in the Fifth Generation," Program Evolution: Processes
of Software Change, edited by M. M. Lehman and L. A.
Belady. Orlando FL: Academic Press, Inc., 1985.

Levitin, Anany V. "How To Measure Software Size, and How Not
To," Proceedings of the Software and Applications
Conference. 314-318. Washington, D. C.: Computer
Society Press of the IEEE, 1986.

112

Li, H. F. and W. K. Cheung. "An Empirical Study of Software
Metrics," IEEE Transactions on Software Engineering,

* Vol. SE-13, No. 6: 697-708 (June 1987).

Liu, Chester C. "A Look at Software Maintenance," Techniques
of Program and System Maintenance, edited by Girish
Parikh. Cambridge, Massachusetts: Winthrop Publishers,
Inc., 1982.

McCall, Jim A. and others. Factors in Software Quality.
Volume 1 of 3. Final Technical Report, RADC-TR-77-369,
August 1976 - July 1977. Contract F30602-76-C-0417.
Griffiss AFB NY: Rome Air Development Center, November
1977 (AD-A049014).

McClure, Carma L. "A Model for Program Complexity Analysis,"
Proceedings of the Third International Conference on
Software Engineering. 149-157. New York: IEEE
Computer Society, 1978.

C Mohanty, Siba N. "Models and Measurements for Quality
Assessment of Software," Computing Surveys, Vol. 11,
No. 3: 251-275 (September 1979).

Novak, Joseph D. and D. Bob Gowin. Learning How to Learn.
Cambridge, Massachusetts: Cambridge University Press,

* 1984.

Oviedo, Enrique I. "Control Flow, Data Flow, and Program
Complexity," Proceedings of the Fourth International
COMPSAC. 146-152. New York: IEEE Computer Society,
October 1980.

Parikh, Girish. "Introduction - The World of Software
Maintenance," Techniques of Program and System
Maintenance, edited by Girish Parikh. Cambridge,
Massachusetts: Winthrop Publishers, Inc., 1982.

Peercy, David E. "A Software Maintainability Evaluation
Methodology," IEEE Transactions on Software
Engineering, SE-7, 4: 343-351 (July 1981).

Peercy, David E. and others. "Assessing Software
Supportability Risk - A Minitutorial," Proceeding of the
Conference on Software Maintenance. Washington, D. C.:
Computer Society of the IEEE, 1987.

Pressman, Roger S. Software Engineering. New York: McGraw-
Hill Book Company, 1987.

JANUS/Ada, Version 2.0.1. R. R. Software, Inc. P.O. Box
1512, Madison WI 53701, 1988.

113

Rabin, Michael. 0. "Complexity of Computations,"
Communications of the ACM, Vol. 20, No. 9: 625-633
(September 1977).

Rodriguez, Volney and W. T. Tsai. "Software Metrics
Interpretation Through Experimentation," Proceedings of
the IEEE Computer Software and Applications Conference.
Washington, D. C.: Computer Society Press of the IEEE,
1986.

R. R. Software, Inc. JANUS/Ada Development Package (D-Pak)
User Manual. 8086 Version 4.2. P.O. Box 1512, Madison
WI 53701, 1986.

Rubey, Raymond J. and R. Dean Hartwick. "Quantitative
Measurement of Program Quality," Proceedings of the ACM
National Conference. 671-677. New York: Association
for Computing Machinery, 1968.

Schneidewind, Norman F. "The State of Software Maintenance,"
IEEE Transactions on Software Engineering, SE-13, 3:
303-310 (March 1987).

Shaw, Mary. "When is 'Good' Enough? Evaluating and
Selecting Software Metrics," Software Metrics: An
Analysis and Evaluation, edited by Alan Perlis and
others. Cambridge, Massachusetts: The MIT Press, 1981.

Skansholm, Jan. Ada from the Beginning. Wokingham, England:
Addison-Wesley Publishers Limited, 1988.

SofTech, Inc. JOVIAL (J73) Course. MIL-STD-1589C. 3100
Presidential Drive, Fairborn OH, January 1988.

. Computer Programming Manual for the JOVIAL (J73)
Language. 2190-24.2. 3100 Presidential Drive,
Fairborn OH, 10 July 1984.

Stanley, James and others. Ada - A Programmer's Guide with
Microcomputer Examples. Reading, Massachusetts:
Addison-Wesley Publishing Company, Inc., 1985.

Swanson, E. Burton. "The Dimensions of Maintenance,"
Proceedings of the Second International Conference on
Software Engineering. 492-497. Long Beach CA: IEEE
Computer Society, October 1976.

Telford, Captain Daniel, Deputy for Engineering and Software
Analysis. Telephone interview. AFOTEC/F-16 MSIP,
Edwards Air Force Base, California, 7 October 1988a.

. Personal interview. 17 March 1988b.

114

Van Verth, Patricia B. "Testing a Model of Program Quality,"
The Papers of the Seventeenth SIGCSE Technical Symposium
on Computer Science Education. 163-172. New York:
Association for Computing Machinery, 1986.

Waite, Mitchell and others. C Primer Plus. Indianapolis IN:
Howard W. Sams & Company, 1987.

Weissman, Larry. "Psychological Complexity of Computer
Programs: An Experimental Methodology," ACM SIGPLAN
Notices, Vol. 9, No. 6: 25-36 (June 1974).

Woodward, Martin R. and others. "A Measure of Control Flow
Complexity in Program Text," IEEE Transactions on
Software Engineering, Vol. SE-5, No. 1: 101-106
(January 1979).

Yau, Stephen S. and James S. Collofello. "Design Stability
Measures for Software Maintenance," IEEE Transactions
on Software Engineering, SE-II, 9: 849-856 (September
1985).

Zelkowitz, Marvin V. "Perspectives on Software Engineering,"
Computing Surveys, Vol. 10, No. 2: 197-216 (June 1978).

115

VITA

Captain Douglas R. Tindell was born oni

He attended Auburn University in Auburn,

Alabama, and earned a Bachelor of Electrical Engineering

degree in 1979. After receiving his commission in the U. S.

Air Force, he was assigned to the 6595th Aerospace Test

Group, Atlas Division, Vandenberg AFB, California where he

served in various launch-related positions. His following

assignment was to the 6520th Test Group, Instrumentation

Division, Edwards AFB, California where he was responsible

for specialized instrumentation equipment used on cruise

missile F-4 chase aircraft. In 1985, he earned a Master of

Public Adminstration degree from Golden Gate University. His

next assignment was to the Air Force Flight Test Center,

Plans and Programs Office, Edwards AFB, California where he

served as a program analyst until being assigned to the Air

Force Institute of Technology, School of Engineering in 1987.

4 116

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLAS SI FI ED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/88D-57

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (C/t), State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-6583

Sa. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION J (If applicable)

Sc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO A CCESSION NO.

11. TITLE (Include Security Classification)

MAINTENANCE METRICS FOR JOVIAL (J73) SOFTWARE

12. PERSONAL AUTHOR(S)
Douglas R. Tindell, B.E.E, M.P.A., Captain, USAF

13e. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

MS Thesis FROM TO 1988 DecemberI 116
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP Maintainability, Measurement,

12 05 Computer Programs

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: James W. Howatt, Major USAF
Professor of Computer ystems

20.DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRA C SSIFICATION
E2tJNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 03 DTIC USERS UNCLA 9IF D

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
James W. Howatt, Major, USAF 513-255-6913 AFIT/ENG

UNCLASSIFIED

Block 19.

The expense of maintaining software is greater than any
other phase in the life cycle. To help reduce the costs,
software which may not be maintainable should be identified
before being released for use. Measures of software quality,
or metrics, may be able to help do this. The goal of this
study was to identify measures which could indicate the
maintainability of JOVIAL (J73) software, and to implement
selected ones.

Maintainability cannot be measured directly, so a strong
indicator, complexity, was measured instead. Five categories
of complexity metrics were reviewed: size, control, data,
information, and hybrid. Through an analysis of metrics from
each category, the information metric was selected for
implementation.

Using Ada as the implementation language, an analyzer to
compute the information metric was constructed. The design
was primarily object-oriented but was influenced by compiler
theory. The resulting analyzer can easily incorporate new
metrics or new input/output requirements.

Testing was performed using both simple code examples
and actual F-16 flight software. The analyzer properly
computes the information metric with few exceptions. A plan
to compare the results of the analyzer with the results of
the sponsor's present manual review was described.

)

UNCLASSIFIED

